Wavelet frames on the sets of $M$-positive vectors
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part III, Tome 539 (2024), pp. 5-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Wavelets on the spaces of $M$-positive vectors are studied. Such a space is a multidimensional analog of the half-line in Walsh analysis. Similarly to the half-line, there exists a class of so-called test functions (with a compact support of the function itself and of its Fourier transform) in such spaces. Wavelet frames consisting of the test functions are of special interest because they may be useful for applications to signal processing. A method for constructing such dual wavelet frames is developed in the paper.
@article{ZNSL_2024_539_a0,
     author = {M. V. Babushkin and M. A. Skopina},
     title = {Wavelet frames on the sets of $M$-positive vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--30},
     year = {2024},
     volume = {539},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a0/}
}
TY  - JOUR
AU  - M. V. Babushkin
AU  - M. A. Skopina
TI  - Wavelet frames on the sets of $M$-positive vectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 5
EP  - 30
VL  - 539
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a0/
LA  - ru
ID  - ZNSL_2024_539_a0
ER  - 
%0 Journal Article
%A M. V. Babushkin
%A M. A. Skopina
%T Wavelet frames on the sets of $M$-positive vectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 5-30
%V 539
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a0/
%G ru
%F ZNSL_2024_539_a0
M. V. Babushkin; M. A. Skopina. Wavelet frames on the sets of $M$-positive vectors. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part III, Tome 539 (2024), pp. 5-30. http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a0/

[1] M. A. Skopina, Yu. A. Farkov, “Walsh-type functions on M-positive sets in $\mathbb{R}^d$”, Mathematical Notes, 111:4 (2022), 643–647 | DOI | MR | Zbl

[2] Yu. A. Farkov, “Discrete wavelet transforms in Walsh analysis”, J. Math. Sci., New York, 257:1 (2021), 127–137 | DOI | MR | Zbl

[3] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov., FIZMATLIT, M., 2006

[4] Yu. Farkov, M. Skopina, “Harmonic analysis on the space of M-positive vectors”, J. Math. Sci., 280 (2024), 5–22 | DOI | MR | Zbl

[5] A. Krivoshein, V. Protasov, M. Skopina, Multivariate wavelet frames, Industrial and Applied Mathematics, Springer, Singapore, 2016 | MR | Zbl

[6] C. Bandt, “Self-similar sets 5. Integer matrices and fractal tilings of $\mathbb{R}^n$”, Proc. Amer. Math. Soc., 112 (1991), 549–562 | MR | Zbl

[7] J. C. Lagarias, Y. Wang, “Self-affine tiles in $\mathbb{R}^n$”, Adv. Math., 121:1 (1996), 21–49 | DOI | MR | Zbl

[8] J.-P. Gabardo, Yu X. J., “Natural tiling, lattice tiling and Lebesgue measure of integral self-affine tiles”, J. London Math. Soc., 74:01 (2006), 184–204 | DOI | MR | Zbl

[9] M. Skopina, “Tight wavelet frames on the space of M-positive vectors”, Anal. Applic, 22:05 (2024), 913–936 | DOI | MR | Zbl

[10] I. Ya. Novikov, M. A. Skopina, Pochemu v raznykh strukturakh bazisy Khaara odinakovye?, Matem. zametki, 91:6 (2012), 950–953 | DOI | Zbl

[11] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge (UK) etc., 1988 | MR | Zbl

[12] O. Christensen, An introduction to frames and riesz bases, Birkhauser, 2016 | MR | Zbl