@article{ZNSL_2024_539_a0,
author = {M. V. Babushkin and M. A. Skopina},
title = {Wavelet frames on the sets of $M$-positive vectors},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--30},
year = {2024},
volume = {539},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a0/}
}
M. V. Babushkin; M. A. Skopina. Wavelet frames on the sets of $M$-positive vectors. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part III, Tome 539 (2024), pp. 5-30. http://geodesic.mathdoc.fr/item/ZNSL_2024_539_a0/
[1] M. A. Skopina, Yu. A. Farkov, “Walsh-type functions on M-positive sets in $\mathbb{R}^d$”, Mathematical Notes, 111:4 (2022), 643–647 | DOI | MR | Zbl
[2] Yu. A. Farkov, “Discrete wavelet transforms in Walsh analysis”, J. Math. Sci., New York, 257:1 (2021), 127–137 | DOI | MR | Zbl
[3] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov., FIZMATLIT, M., 2006
[4] Yu. Farkov, M. Skopina, “Harmonic analysis on the space of M-positive vectors”, J. Math. Sci., 280 (2024), 5–22 | DOI | MR | Zbl
[5] A. Krivoshein, V. Protasov, M. Skopina, Multivariate wavelet frames, Industrial and Applied Mathematics, Springer, Singapore, 2016 | MR | Zbl
[6] C. Bandt, “Self-similar sets 5. Integer matrices and fractal tilings of $\mathbb{R}^n$”, Proc. Amer. Math. Soc., 112 (1991), 549–562 | MR | Zbl
[7] J. C. Lagarias, Y. Wang, “Self-affine tiles in $\mathbb{R}^n$”, Adv. Math., 121:1 (1996), 21–49 | DOI | MR | Zbl
[8] J.-P. Gabardo, Yu X. J., “Natural tiling, lattice tiling and Lebesgue measure of integral self-affine tiles”, J. London Math. Soc., 74:01 (2006), 184–204 | DOI | MR | Zbl
[9] M. Skopina, “Tight wavelet frames on the space of M-positive vectors”, Anal. Applic, 22:05 (2024), 913–936 | DOI | MR | Zbl
[10] I. Ya. Novikov, M. A. Skopina, Pochemu v raznykh strukturakh bazisy Khaara odinakovye?, Matem. zametki, 91:6 (2012), 950–953 | DOI | Zbl
[11] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge (UK) etc., 1988 | MR | Zbl
[12] O. Christensen, An introduction to frames and riesz bases, Birkhauser, 2016 | MR | Zbl