Chevalley groups over Laurent polynomial rings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 7, Tome 538 (2024), pp. 152-159

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a simply connected Chevalley–Demazure group scheme without $\mathrm{SL}_2$-factors. For any unital commutative ring $R$, we denote by $E(R)$ the standard elementary subgroup of $G(R)$, that is, the subgroup generated by the elementary root unipotent elements. Set $K_1^G(R)=G(R)/E(R)$. We prove that the natural map $$ K_1^G(R[x_1^{\pm 1},\ldots,x_n^{\pm 1}])\to K_1^G\bigl(R((x_1))\ldots((x_n))\bigr) $$ is injective for any $n\ge 1$, if $R$ is either a Dedekind domain or a Noetherian ring that is geometrically regular over a Dedekind domain with perfect residue fields. For $n=1$ this map is also an isomorphism. As a consequence, we show that if $D$ is a PID such that $SL_2(D)=E_2(D)$ (e. g. $D=\mathbb{Z}$), then $$ G(D[x_1^{\pm 1},\ldots,x_n^{\pm 1}])=E(D[x_1^{\pm 1},\ldots,x_n^{\pm 1}]). $$ This extends earlier results for special linear and symplectic groups due to A. A. Suslin and V. I. Kopeiko.
@article{ZNSL_2024_538_a6,
     author = {A. Stavrova},
     title = {Chevalley groups over {Laurent} polynomial rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {152--159},
     publisher = {mathdoc},
     volume = {538},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a6/}
}
TY  - JOUR
AU  - A. Stavrova
TI  - Chevalley groups over Laurent polynomial rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 152
EP  - 159
VL  - 538
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a6/
LA  - en
ID  - ZNSL_2024_538_a6
ER  - 
%0 Journal Article
%A A. Stavrova
%T Chevalley groups over Laurent polynomial rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 152-159
%V 538
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a6/
%G en
%F ZNSL_2024_538_a6
A. Stavrova. Chevalley groups over Laurent polynomial rings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 7, Tome 538 (2024), pp. 152-159. http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a6/