Chevalley groups over Laurent polynomial rings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 7, Tome 538 (2024), pp. 152-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G$ be a simply connected Chevalley–Demazure group scheme without $\mathrm{SL}_2$-factors. For any unital commutative ring $R$, we denote by $E(R)$ the standard elementary subgroup of $G(R)$, that is, the subgroup generated by the elementary root unipotent elements. Set $K_1^G(R)=G(R)/E(R)$. We prove that the natural map $$ K_1^G(R[x_1^{\pm 1},\ldots,x_n^{\pm 1}])\to K_1^G\bigl(R((x_1))\ldots((x_n))\bigr) $$ is injective for any $n\ge 1$, if $R$ is either a Dedekind domain or a Noetherian ring that is geometrically regular over a Dedekind domain with perfect residue fields. For $n=1$ this map is also an isomorphism. As a consequence, we show that if $D$ is a PID such that $SL_2(D)=E_2(D)$ (e. g. $D=\mathbb{Z}$), then $$ G(D[x_1^{\pm 1},\ldots,x_n^{\pm 1}])=E(D[x_1^{\pm 1},\ldots,x_n^{\pm 1}]). $$ This extends earlier results for special linear and symplectic groups due to A. A. Suslin and V. I. Kopeiko.
@article{ZNSL_2024_538_a6,
     author = {A. Stavrova},
     title = {Chevalley groups over {Laurent} polynomial rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {152--159},
     year = {2024},
     volume = {538},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a6/}
}
TY  - JOUR
AU  - A. Stavrova
TI  - Chevalley groups over Laurent polynomial rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 152
EP  - 159
VL  - 538
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a6/
LA  - en
ID  - ZNSL_2024_538_a6
ER  - 
%0 Journal Article
%A A. Stavrova
%T Chevalley groups over Laurent polynomial rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 152-159
%V 538
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a6/
%G en
%F ZNSL_2024_538_a6
A. Stavrova. Chevalley groups over Laurent polynomial rings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 7, Tome 538 (2024), pp. 152-159. http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a6/

[1] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Comm. Algebra, 11 (1983), 1271–1307 | DOI | MR | Zbl

[2] C. Chevalley, “Sur certains groupes simples”, Tohoku Math. J., 7 (1955), 14–66 | DOI | MR | Zbl

[3] Huah Chu, “On the $GE_2$ of graded rings”, J. Algebra, 90 (1984), 208–216 | DOI | MR | Zbl

[4] M. Demazure, A. Grothendieck, Schémas en groupes, Lect. Notes Math., 151–153, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR

[5] P. Gille, A. Stavrova, $R$-equivalence on group schemes and non-stable $K^1$-functors, arXiv: 2107.01950

[6] L. Gruson, “Une propriété des couples henséliens”, Colloque d'Algèbre Commutative (Rennes, 1972), Publ. Sém. Math. Univ. Rennes, 10, 1972, 13 pp. | MR | Zbl

[7] V. I. Kopeiko, “O strukture spetsialnoi lineinoi gruppy nad koltsami loranovskikh mnogochlenov”, Fundament. i prikl. matem., 1:4 (1995), 1111–1114 | MR | Zbl

[8] V. I. Kopeiko, “Simplekticheskie gruppy nad koltsami loranovskikh mnogochlenov i diagrammy skleiki”, Fundament. i prikl. matem., 5:3 (1999), 943–945 | MR | Zbl

[9] T. Y. Lam, Serre's problem on projective modules, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006 | DOI | MR

[10] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. de l'É.N.S. $4^e$ série, 2:1 (1969), 1–62 | MR | Zbl

[11] V. Petrov, A. Stavrova, “Elementary subgroups of isotropic reductive groups”, St. Petersburg Math. J., 20 (2009), 625–644 | DOI | MR | Zbl

[12] E. B. Plotkin, “Surjective stabilization of the $K_1$-functor for some exceptional Chevalley groups”, J. Soviet Math., 64:1 (1993), 751–766 | DOI | MR

[13] D. Popescu, “Letter to the Editor: General Néron desingularization and approximation”, Nagoya Math. J., 118 (1990), 45–53 | DOI | MR | Zbl

[14] A. Stavrova, “Homotopy invariance of non-stable $K_1$-functors”, J. K-Theory, 13 (2014), 199–248 | DOI | MR | Zbl

[15] A. Stavrova, “Non-stable $K_1$-functors of multiloop groups”, Canad. J. Math., 68 (2016), 150–178 | DOI | MR | Zbl

[16] A. Stavrova, “Chevalley groups of polynomial rings over Dedekind domains”, J. Group Theory, 23 (2020), 121–132 | DOI | MR | Zbl

[17] A. Stavrova, “$\mathbb{A}^1$-invariance of non-stable $K_1$-functors in the equicharacteristic case”, Indag. Math., 33:2 (2022), 322–333 | DOI | MR | Zbl

[18] M. R. Stein, “Stability theorems for $K_{1}$, $K_{2}$ and related functors modeled on Chevalley groups”, Japan. J. Math. (N.S.), 4:1 (1978), 77–108 | DOI | MR | Zbl

[19] A. Stepanov, “Elementary calculus in Chevalley groups over rings”, J. Prime Res. Math., 9 (2013), 79–95 | MR | Zbl

[20] A. A. Suslin, “On the structure of the special linear group over polynomial rings”, Math. USSR Izv., 11 (1977), 221–238 | DOI | MR | Zbl

[21] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and the orthogonal group over polynomial rings”, J. Soviet Math., 20 (1982), 2665–2691 | DOI | Zbl

[22] R. G. Swan, “Néron-Popescu desingularization”, Algebra and Geometry (Taipei, 1995), Lect. Alg. Geom., 2, Int. Press, Cambridge, MA, 1998, 135–198 | MR

[23] G. Taddei, “Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55, 1986, 693–710 | DOI | MR | Zbl