Local rules for quasi-periodic tilings
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 7, Tome 538 (2024), pp. 102-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The tilings of any dimension $d$ and codimension $d'$ are considered. Such tilings are obtained as sections of a periodic hyper-tiling $\subset\mathbb{R}^D$ by $d$-dimensional subspace $E$ of the hyperspace $\mathbb{R}^{D}$ of dimension $D=d+d'$. By using the projection of the unit $D$-dimensional cube to the space $E'$ orthogonal to $E$, local matching rules are established that determine the local structure of the tiling. In general, the tilings considered may contain ramificated vertices. In the multi-faceted stars of such vertices the polyhedra can overlap each other. A regularization algorithm is given that allows the selection of one of the polyhedral stars of the package.
@article{ZNSL_2024_538_a3,
     author = {V. G. Zhuravlev},
     title = {Local rules for quasi-periodic tilings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--128},
     year = {2024},
     volume = {538},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a3/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Local rules for quasi-periodic tilings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 102
EP  - 128
VL  - 538
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a3/
LA  - ru
ID  - ZNSL_2024_538_a3
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Local rules for quasi-periodic tilings
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 102-128
%V 538
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a3/
%G ru
%F ZNSL_2024_538_a3
V. G. Zhuravlev. Local rules for quasi-periodic tilings. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 7, Tome 538 (2024), pp. 102-128. http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a3/

[1] P. Arnoux, V. Berthé, S. Ito, “Discrete planes, $\mathbb{Z}^2$-actions, Jacobi–Perron algorithm and substitutions”, Ann. Inst. Fourier (Grenoble), 52:2 (2002), 305–349 | DOI | MR | Zbl

[2] V. Berthé, L. Vuillon, “Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences”, Discrete Math., 223 (2000), 27–53 | DOI | MR | Zbl

[3] V. Berthé, A. Siegel, J. Thuswaldner, “Substitutions, Rauzy fractals and tilings”, Combinatorics, Automata and Number Theory, Encyclopedia Math. Appl., 135, Cambridge Univ. Press, 2010, 248–323 | MR | Zbl

[4] S. Ito, M. Ohtsuki, “Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms”, Tokyo J. Math., 16:2 (1993), 441–472 | MR | Zbl

[5] S. Ito, M. Ohtsuki, “Parallelogram tilings and Jacobi-Perron algorithm”, Tokyo J. Math., 17:1 (1994), 33–58 | DOI | MR | Zbl

[6] V. G. Zhuravlev, “Universalnye yadernye razbieniya”, Zap. nauchn. semin. POMI, 490, 2020, 49–93

[7] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 71:2 (2007), 89–122 | DOI | MR | Zbl

[8] G. Rauzy, “Nombres algeébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | DOI | MR | Zbl

[9] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka na tore”, Zapiski nauchnykh seminarov POMI, 322, 2005, 83–106 | Zbl

[10] I. P. Kornfel'd, Ya. G. Sinai, S. V. Fomin, Ergodic theory, Grundlehren der Mathematischen Wissenschaften, 245, Springer-Verlag, New York, 1982 | DOI | MR | MR | Zbl

[11] Ch. Oguey, M. Duneau, A. Katz, “A geometrical approach of quasiperiodic tilings”, Commun. Math. Phys., 118 (1988), 99–118 | DOI | MR | Zbl

[12] R. Penrose, “Role of aesthetics in pure and applied mathematical research”, Bull. Inst. Maths. Appl., 10 (1974), 266–271

[13] N. G. deBruijn, “Algebraic theory of Penrose's non-periodic tilings of the plane”, Nederl. Akad. Wtensh. Proc., A84 (1981), 39–66 | MR

[14] A. Katz, “Theory of matching rules for the $3$-dimensional Penrose tilings”, Commun. Math. Phys., 118 (1988), 263–288 | DOI | MR | Zbl

[15] Thang T. Q. Le, “Local Rules for Quasiperiodic Tilings”, The mathematics of long-range aperiodic order (Waterloo, ON, 1995), Kluwer, Dordrecht, 1997, 331–366 | MR | Zbl

[16] P. J. Steinhardt, “New perspectives on forbidden symmetries, quasicrystals, and Penrose tilings”, Proc. Natl. Acad. Sci. USA, 93 (1996), 14267–14270 | DOI | MR

[17] V. G. Zhuravlev, “Parametrizatsiya dvumernogo kvaziperiodicheskogo razbieniya Rozi”, Algebra i analiz, 22 (2010), 21–56

[18] V. G. Zhuravlev, “Lokalnyi algoritm postroeniya proizvodnykh razbienii dvumernogo tora”, Zap. nauch. semin. POMI, 479, 2019, 85–120