@article{ZNSL_2024_538_a2,
author = {V. G. Zhuravlev},
title = {Multidimensional {Euclidean} algorithm and continued fractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {85--101},
year = {2024},
volume = {538},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a2/}
}
V. G. Zhuravlev. Multidimensional Euclidean algorithm and continued fractions. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 7, Tome 538 (2024), pp. 85-101. http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a2/
[1] Khinchin A. Ya., Tsepnye drobi, chetvertoe izd., Nauka, M., 1978
[2] P. Arnoux, S. Labbe, On some symmetric multidimensional continued fraction algorithms, 2015, arXiv: 1508.07814 | MR
[3] V. Berthe, S. Labbe, “Factor complexity of S-adic words generated by the Arnoux–Rauzy–Poincare algorithm”, Advances in Applied Mathematics, 63 (2015), 90–130 | DOI | MR | Zbl
[4] V. Brun, “En generalisation av Kjedebroken”, Skrifter utgit av Videnskapsselskapeti Kristiania, I. Matematisk–Naturvidenskabelig Klasse, 6 (1919–1920)
[5] V. Brun, “Algorithmes euclidiens pour trois et quatre nombres”, Treizieme congres des mathematiciens scandinaves (Helsinki 18–23 aout 1957), Mercators Tryckeri, Helsinki, 1958, 45–64 | MR
[6] J. Cassaigne, “Un algorithme de fractions continues de complexite lineaire”, DynA3S meeting (October 12th, 2015), LIAFA, Paris, 2015
[7] A. Nogueira, “The three-dimensional Poincare continued fraction algorithm”, Israel J. Math., 90:1–3 (1995), 373–401 | DOI | MR | Zbl
[8] E. S. Selmer, “Continued fractions in several dimensions”, Nordisk Nat. Tidskr., 9 (1961), 37–43 | MR | Zbl
[9] F. Schweiger, Multidimensional Continued Fraction, Oxford Univ. Press, New York, 2000 | MR
[10] S. Labbe, $3$-dimensional Continued Fraction Algorithms Cheat Sheets, 2015, arXiv: 1511.08399v1
[11] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 1–20
[12] V. G. Zhuravlev, Yadernye tsepnye drobi, VlGU, Vladimir, 2019 https://vk.com/id589973164
[13] T. W. Cusick, “Diophantine Approximation of Ternary Linear Forms”, Mathematics of computation, 25:113 (1971), 163–180 | DOI | MR | Zbl
[14] T. W. Cusick, “Diophantine Approximation of Ternary Linear Forms, II”, Mathematics of computation, 26:120 (1972), 977–993 | DOI | MR | Zbl
[15] V. G. Zhuravlev, “Diofantovy priblizheniya lineinykh form”, Algebra i analiz, 490 (2020), 5–24
[16] Dzh. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 1961
[17] V. Shmidt, Diofantovy priblizheniya, Mir, M., 1983