Multidimensional inhomogeneous approximations
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 7, Tome 538 (2024), pp. 45-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The simplex-karyon algorithm is applied to multidimensional inhomogeneous approximations in combination with one more algorithm, which finds an approximation parallelepiped into which the approximate point falls when splitting the polyhedral karyon tiling.
@article{ZNSL_2024_538_a1,
     author = {V. G. Zhuravlev},
     title = {Multidimensional inhomogeneous approximations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--84},
     year = {2024},
     volume = {538},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Multidimensional inhomogeneous approximations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 45
EP  - 84
VL  - 538
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a1/
LA  - ru
ID  - ZNSL_2024_538_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Multidimensional inhomogeneous approximations
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 45-84
%V 538
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a1/
%G ru
%F ZNSL_2024_538_a1
V. G. Zhuravlev. Multidimensional inhomogeneous approximations. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 7, Tome 538 (2024), pp. 45-84. http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a1/

[1] V. G. Zhuravlev, Yadernye tsepnye drobi, VlGU, Vladimir, 2019 https://vk.com/id589973164

[2] V. G. Zhuravlev, “Simpleks-yadernyi algoritm razlozheniya v mnogomernye tsepnye drobi”, Sovremennye problemy matematiki, 299, MIAN, 2017, 283–303

[3] V. G. Zhuravlev, “Simpleks-modulnyi algoritm razlozheniya algebraicheskikh chisel v mnogomernye tsepnye drobi”, Zap. nauchn. semin. POMI, 449, 2016, 168–195

[4] Dzh. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, Nauka, M., 1961

[5] V. Shmidt, Diofantovy priblizheniya, Mir, M., 1983

[6] A. Khintchine, “Über die angenäherte Auflösung linearer Gleichungen in ganzen Zahlen”, Acta Arith., 2 (1937), 161–172 | DOI | Zbl

[7] A. Ya. Khinchin, Izbrannye trudy po teorii chisel, MTsNMO, M., 2006

[8] T. Komatsu, “On inhomogeneous Diophantine approximation and the Nishioka-Shiokawa-Tamura algorithm”, Acta arithm., 86:4 (1998), 305–324 | DOI | MR | Zbl

[9] Sh. Yasutomi, “On a new algorithm for inhomogeneous diophantine approximation”, Tsukuba J. Math., 29 (2005), 173–195 | DOI | MR | Zbl

[10] V. G. Zhuravlev, “Differentsirovanie yadernykh razbienii”, Zap. nauchn. semin. POMI, 511, 2022, 28–53

[11] V. G. Zhuravlev, “Universalnye yadernye razbieniya”, Zap. nauchn. semin. POMI, 490, 2020, 49–93

[12] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 392, 2011, 95–145

[13] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhdeniya Anatoliya Alekseevicha Karatsuby, v. 1, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102 | DOI

[14] V. G. Zhuravlev, “Lokalnyi algoritm postroeniya proizvodnykh razbienii dvumernogo tora”, Zap. nauchn. semin. POMI, 479, 2019, 85–120

[15] V. G. Zhuravlev, “Samopodobiya i podstanovki yadernykh razbienii”, Zap. nauchn. semin. POMI, 523, 2023, 83–120

[16] V. G. Zhuravlev, “Inflyatsiya i deflyatsiya yadernykh razbienii”, Zap. nauchn. semin. POMI, 523, 2023, 53–82