Multidimensional inhomogeneous approximations
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 7, Tome 538 (2024), pp. 45-84

Voir la notice de l'article provenant de la source Math-Net.Ru

The simplex-karyon algorithm is applied to multidimensional inhomogeneous approximations in combination with one more algorithm, which finds an approximation parallelepiped into which the approximate point falls when splitting the polyhedral karyon tiling.
@article{ZNSL_2024_538_a1,
     author = {V. G. Zhuravlev},
     title = {Multidimensional inhomogeneous approximations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--84},
     publisher = {mathdoc},
     volume = {538},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Multidimensional inhomogeneous approximations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 45
EP  - 84
VL  - 538
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a1/
LA  - ru
ID  - ZNSL_2024_538_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Multidimensional inhomogeneous approximations
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 45-84
%V 538
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a1/
%G ru
%F ZNSL_2024_538_a1
V. G. Zhuravlev. Multidimensional inhomogeneous approximations. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 7, Tome 538 (2024), pp. 45-84. http://geodesic.mathdoc.fr/item/ZNSL_2024_538_a1/