Inverse theorem of polynomial approximation on an elliptic curve
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 151-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\wp(z)$ be a doubly periodic Weierstrass function with periods $2\omega_1$, $2\omega_2$, let $Q$ be a parallelogram with vertexes $0, 2\omega_1, 2\omega_2, 2(\omega_1+\omega_2)$, and let $s_k$, $1\leq k\leq m$, be pairwise disjoint segments, $s_k=[a_k,b_k]\subset Q$, $1\leq k\leq m$. We choose numbers $\varepsilon_{kn}>0$ satisfying the condition $\sum\limits_{k=1}^m \overset{\infty} {\underset{n=1}{\sum}}\varepsilon^2_{kn}<\infty$. We denote by $g(z)$ the Green functions of the region $\mathbb{C}\setminus \bigcup\limits_{k=1}^{m} s_k$ with the logarithmic pole at $\infty$ and put $L_h=\{z\in Q\setminus \bigcup\limits_{k=1}^{m} s_k: g(z)=h\}$, $0. Let $T(z)=(\wp(z),\wp'(z)), z\in Q$, \begin{equation*} d_{kn}(z)=1+\dfrac{1}{2^n\sqrt{\delta(T(z),T(a_k))\cdot\delta(T(z),T(b_k))}}, z\in s_k, \end{equation*} \begin{equation*} \delta((\zeta,w),(\zeta',w'))=\sqrt{|\zeta-\zeta'|^2+|w-w'|^2} .\end{equation*} We prove the following claim. Theorem 1$'$. Suppose that $2\leq p_k<\infty, 1\leq k\leq m, f_k\in C(s_k)$. Assume that there exist polynomials $\mathsf{P}_{2^n}(u,v), \deg\mathsf{P}_{2^n}\leq 2^n$, and a constant $C_*$ such that for $n=1,2,...$ one has the estimate \begin{equation*} \sum\limits_{k=1}^m \int\limits_{s_k}\displaystyle\left|\frac{f_k(z) -\mathsf{P}_{2^n}(\wp(z),\wp'(z))}{\varepsilon_{kn}\rho_{2^{-n}}(z)}\right|^{p_k}d_{kn}(z)|dz|\leq C_{*}. \end{equation*} Then $f_k'(z)\in L^{p_k}(s_k), 1\leq k\leq m$.
@article{ZNSL_2024_537_a7,
     author = {M. A. Shagay},
     title = {Inverse theorem of polynomial approximation on an elliptic curve},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--177},
     year = {2024},
     volume = {537},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a7/}
}
TY  - JOUR
AU  - M. A. Shagay
TI  - Inverse theorem of polynomial approximation on an elliptic curve
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 151
EP  - 177
VL  - 537
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a7/
LA  - ru
ID  - ZNSL_2024_537_a7
ER  - 
%0 Journal Article
%A M. A. Shagay
%T Inverse theorem of polynomial approximation on an elliptic curve
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 151-177
%V 537
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a7/
%G ru
%F ZNSL_2024_537_a7
M. A. Shagay. Inverse theorem of polynomial approximation on an elliptic curve. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 151-177. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a7/

[1] Shagai M.A., Shirokov N.A., “Approximation by polynomials of doubly periodic Weierstrass functions on disjunct segments”, Zapiski nauchnyh seminarov POMI, 527, 2023, 242-255

[2] Dynkin E.M., “Constructive characteristics of S.L.Sobolev and O.V.Besov classes”, Trudy MIAN SSSR, 155, 1981, 41-76 | Zbl

[3] Ch. Pommerenke, Univalent Functions, Studia Mathematica/Mathematische Lehrbucher, XXV, Vandenhoeck Ruprecht, Gottingen, 1975 | MR

[4] N.I. Akhiezer, Elements of the theory of elliptic functions, “Nauka”, M., 1970 | MR