Estimates in the ideal problem for the algebra $H^\infty$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 116-127
Cet article a éte moissonné depuis la source Math-Net.Ru
Previous results by the author and S. V. Kislyakov (Algebra i Analiz, 35, No. 5 (2023), 99–116) about the independence of the solvability of the ideal problem on the nature of spaces in which it is posed are extended to incorporate the context of the work by S. R. Treil (J. Funct. Analysis, 253 (2007), 220–240) and J. Pau (Proc. Amer. Math. Soc., 133 (2005), 167–174).
@article{ZNSL_2024_537_a5,
author = {A. A. Skvortsov},
title = {Estimates in the ideal problem for the algebra $H^\infty$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {116--127},
year = {2024},
volume = {537},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a5/}
}
A. A. Skvortsov. Estimates in the ideal problem for the algebra $H^\infty$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 116-127. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a5/
[1] S. V. Kislyakov, A. A. Skvortsov, “Teoremy o nepodvizhnoi tochke i klassy Khardi”, Zap. nauchn. semin. POMI, 512, 2022, 95–115
[2] Jordi Pau, “On a generalized corona problem on the unit disc”, Proceedings of the American Mathematical Society, 133 (2005), 167–174 | MR | Zbl
[3] S. V. Kislyakov, A. A. Skvortsov, “Razlichnye metriki v zadache ob idealakh algebry $H^{\infty}$”, Algebra i analiz, 35:5 (2023), 99–116
[4] I. K. Zlotnikov, “Zadacha ob idealakh algebry $H^{\infty}$ v sluchae nekotorykh prostranstv posledovatelnostei”, Algebra i analiz, 29:5 (2017), 51–67
[5] S. Treil, “The problem of ideals of $H^{\infty}$: Beyond the exponent 3/2”, J. Funct. Analysis, 253 (2007), 220–240 | DOI | MR | Zbl