Estimates in the ideal problem for the algebra $H^\infty$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 116-127
Voir la notice de l'article provenant de la source Math-Net.Ru
Previous results by the author and S. V. Kislyakov (Algebra i Analiz, 35, No. 5 (2023), 99–116) about the independence of the solvability of the ideal problem on the nature of spaces in which it is posed are extended to incorporate the context of the work by S. R. Treil (J. Funct. Analysis, 253 (2007), 220–240) and J. Pau (Proc. Amer. Math. Soc., 133 (2005), 167–174).
@article{ZNSL_2024_537_a5,
author = {A. A. Skvortsov},
title = {Estimates in the ideal problem for the algebra $H^\infty$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {116--127},
publisher = {mathdoc},
volume = {537},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a5/}
}
A. A. Skvortsov. Estimates in the ideal problem for the algebra $H^\infty$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 116-127. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a5/