Inverse theorem of approximation by entire functions of exponential type
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 104-115
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $I_k=[a_k,b_k],\ J_k=[b_k,a_{k+1}],\ b_k, be segments on the real axis tending to $+\infty$ and to $-\infty$. Assume that these segments satisfy the conditions $|I_k|=2^{-n\alpha}$ if $I_k\subset [2^{n},2^{n+1}] $ or $I_k\subset [-2^{n+1},-2^{n}] $, $\alpha>0$ being fixed, $n\geq n_0$. Assume also that there exists a constant $c_1>0$ such that $ 2^{n_0}\cdot 2^{-n\alpha}\leq|J_k|\leq c_1\cdot2^{n_0}\cdot 2^{-n\alpha}$ if $J_k\subset [2^{n},2^{n+1}]$ or $J_k\subset [-2^{n+1},-2^{n}],k\in\mathbb{Z}$. Put $E=\bigcup\limits_{k\in\mathbb{Z}}J_k$. Denote by $f_{E,1}(z)$ a function subharmonic on $\mathbb{C}$ and satisfying the conditions $f_{E,1}(x)=0,x\in E, f_{E,1}(z)$ is harmonic on $\mathbb{C}\setminus E$, $ \underset{z\rightarrow\infty}{\varlimsup} \dfrac{f_{E,1}(z)}{|z|}=1$, and $g(z)\leq f_{E,1}(z),\ z\in\mathbb{C}$, for every function $g$ subharmonic on $\mathbb{C}$ and such that $g(x)\leq 0$, $x\in E$, and $ \underset{z\rightarrow\infty}{\varlimsup}\dfrac{g(z)}{|z|}\leq1.$ We define sets $L_t(E)$ as follows: $$L_t=\{z\in\mathbb{C}: f_{E,1}(z)=t\}$$ and put $\rho_t(x)=\text{dist}(x,L_t(E)),\ x\in E$. Let $T_{\sigma}$ be the set of entire functions of exponential type satisfying the condition $|F_{\sigma}(z)|\leq c_{F_{\sigma}}\exp(\sigma|\text{Im}z|),z\in\mathbb{C}, F_{\sigma}\in T_{\sigma}.$ Denote by $\Lambda^s(E)$ the $s$-Hölder class on $E,\ 0 of functions bounded on the set $E$. We prove the following result. Theorem 1. Assume that for a function $f$ defined on $ E$ there exist functions $F_{\sigma}\in T_{\sigma}$ such that \begin{equation}{\notag} |f(x)-F_{\sigma}(x)|\leq c_f\rho^s_{\frac{1}{\sigma}}(x),\ x\in E,\ \sigma \geq 1. \end{equation} Then $f \in \Lambda^s(E)$.
@article{ZNSL_2024_537_a4,
     author = {O. V. Silvanovich and N. A. Shirokov},
     title = {Inverse theorem of approximation by entire functions of exponential type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--115},
     year = {2024},
     volume = {537},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a4/}
}
TY  - JOUR
AU  - O. V. Silvanovich
AU  - N. A. Shirokov
TI  - Inverse theorem of approximation by entire functions of exponential type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 104
EP  - 115
VL  - 537
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a4/
LA  - ru
ID  - ZNSL_2024_537_a4
ER  - 
%0 Journal Article
%A O. V. Silvanovich
%A N. A. Shirokov
%T Inverse theorem of approximation by entire functions of exponential type
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 104-115
%V 537
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a4/
%G ru
%F ZNSL_2024_537_a4
O. V. Silvanovich; N. A. Shirokov. Inverse theorem of approximation by entire functions of exponential type. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 104-115. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a4/

[1] O. V. Silvanovich, N. A. Shirokov, “Priblizhenie tselymi funktsiyami na schetnom ob'edinenii otrezkov veschestvennoi osi. $1$. Formulirovka rezultatov”, Vestn. Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 3 (61):4 (2016), 644–650 | MR

[2] O. V. Silvanovich, N. A. Shirokov, “Priblizhenie tselymi funktsiyami na schetnom ob'edinenii otrezkov veschestvennoi osi. $2$. Dokazatelstvo osnovnoi teoremy”, Vestn. Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 4 (62):1 (2017), 53–63 | MR

[3] O. V. Silvanovich, N. A. Shirokov, “Priblizhenie tselymi funktsiyami na schetnom ob'edinenii otrezkov veschestvennoi osi. $3$. Dalneishee obobschenie”, Vestn. Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 5 (63):2 (2018), 270–277 | MR

[4] O. V. Silvanovich, N. A. Shirokov, “Priblizhenie tselymi funktsiyami na schetnom ob'edinenii otrezkov veschestvennoi osi. $4$. Obratnaya teorema”, Vestn. Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 8 (66):4 (2021), 600–607 | MR | Zbl

[5] B. Ya. Levin, “Mazhoranty v klassakh subgarmonicheskikh funktsii I”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 51 (1989), 3–17 | Zbl

[6] B. Ya. Levin, “Mazhoranty v klassakh subgarmonicheskikh funktsii II”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 52 (1989), 3–21 | Zbl

[7] O. V. Silvanovich, N. A. Shirokov, “Funktsiya B.Ya. Levina dlya nekotorykh sovokupnostei promezhutkov”, Zap. nauchn. semin. POMI, 527, 2023, 183–203