On absolutely divergent Fourier series
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 94-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method of constructing series mentioned in the title in many dimen-\break sions is discussed. This method yields series representing functions of smoothness slightly ligher than for those in the class $C^{(d/2)}(\mathbb T^d)$ and is based on an analog of the de Leeuw–Katznelson–Kahane theorem for the classes $C^{(l)}(\mathbb T^d)$.
@article{ZNSL_2024_537_a3,
     author = {S. V. Kislyakov},
     title = {On absolutely divergent {Fourier} series},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--103},
     year = {2024},
     volume = {537},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a3/}
}
TY  - JOUR
AU  - S. V. Kislyakov
TI  - On absolutely divergent Fourier series
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 94
EP  - 103
VL  - 537
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a3/
LA  - ru
ID  - ZNSL_2024_537_a3
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%T On absolutely divergent Fourier series
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 94-103
%V 537
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a3/
%G ru
%F ZNSL_2024_537_a3
S. V. Kislyakov. On absolutely divergent Fourier series. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 94-103. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a3/

[1] B. S. Kashin, “Zamechaniya o ravnomernoi i absolyutnoi skhodimosti ortogonalnykh ryadov”, Matem. zametki, 108:5 (2020), 782–786 | DOI | MR | Zbl

[2] S. Wainger, Special trigonometric series in k-dimensions, Mem. Amer. Math. Soc., 59, 1965 | MR | Zbl

[3] B.S.Kashin, A.V.Meleshkina, “Ob absolyutnoi skhodimosti ryadov Fure funktsii dvukh peremennykh iz prostranstva $C^{1,\omega}$”, Matem. zametki, 114:4 (2023), 633–636 | DOI | Zbl

[4] K. de Leeuw, Y. Katznelson, J. P. Kahane, “Sur les coefficient de Fourier des fonection continues”, C. R. Acad. Sci. Paris, Sér. A, 285:16 (1977), 1001–1003 | MR | Zbl

[5] N. K. Bari, Trigonometricheskie ryady, Fiz. Mat. Lit., M., 1961

[6] A. Zigmund, Trigonometricheskie ryady, Mir, M., 1965

[7] S. V. Kislyakov, Interpolyatsionnye neravenstva i ikh prilozheniya v garmonicheskom analize, Dissertatsiya na soiskanie uchenoi stepeni doktora fiziko-matematicheskikh nauk, L., 1991

[8] S. V. Kislyakov, “Koeffitsienty Fure granichnykh znachenii funktsii, analiticheskikh v kruge i v bidiske”, Trudy matem. instituta im. V. A. Steklova, 155, Nauka, L., 1981, 77–94 | MR

[9] Kislyakov S. V., “Fourier coefficients of continuous functions and a class of multipliers”, Ann. Inst. Fourier, 38:2 (1988), 147–183 | DOI | MR | Zbl