On absolutely divergent Fourier series
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 94-103

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of constructing series mentioned in the title in many dimen-\break sions is discussed. This method yields series representing functions of smoothness slightly ligher than for those in the class $C^{(d/2)}(\mathbb T^d)$ and is based on an analog of the de Leeuw–Katznelson–Kahane theorem for the classes $C^{(l)}(\mathbb T^d)$.
@article{ZNSL_2024_537_a3,
     author = {S. V. Kislyakov},
     title = {On absolutely divergent {Fourier} series},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--103},
     publisher = {mathdoc},
     volume = {537},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a3/}
}
TY  - JOUR
AU  - S. V. Kislyakov
TI  - On absolutely divergent Fourier series
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 94
EP  - 103
VL  - 537
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a3/
LA  - ru
ID  - ZNSL_2024_537_a3
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%T On absolutely divergent Fourier series
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 94-103
%V 537
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a3/
%G ru
%F ZNSL_2024_537_a3
S. V. Kislyakov. On absolutely divergent Fourier series. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 94-103. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a3/