New Bellman induction and a weak version of BMO
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 64-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We enlarge the area of applicability of the Bellman function method to estimates in the spirit of the John–Nirenberg inequality abandoning certain convexity assumptions. As an application, we consider a characteristic of a function that is much smaller than the BMO norm, but whose finiteness leads to the exponential integrability of the function.
@article{ZNSL_2024_537_a2,
     author = {E. P. Dobronravov and P. B. Zatitskii and D. M. Stolyarov},
     title = {New {Bellman} induction and a weak version of {BMO}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {64--93},
     year = {2024},
     volume = {537},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/}
}
TY  - JOUR
AU  - E. P. Dobronravov
AU  - P. B. Zatitskii
AU  - D. M. Stolyarov
TI  - New Bellman induction and a weak version of BMO
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 64
EP  - 93
VL  - 537
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/
LA  - ru
ID  - ZNSL_2024_537_a2
ER  - 
%0 Journal Article
%A E. P. Dobronravov
%A P. B. Zatitskii
%A D. M. Stolyarov
%T New Bellman induction and a weak version of BMO
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 64-93
%V 537
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/
%G ru
%F ZNSL_2024_537_a2
E. P. Dobronravov; P. B. Zatitskii; D. M. Stolyarov. New Bellman induction and a weak version of BMO. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 64-93. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/

[1] D Azagra, D. Stolyarov, Inner and outer smooth approximation of convex hypersurfaces. When is it possible?, Nonlinear Anal., 230 (2023), 113225, 20 pp. | DOI | MR | Zbl

[2] J. Canto, C. Pérez, E. Rela, “Minimal conditions for BMO”, J. Funct. Anal., 282:2 (2022), 109296, 21 pp. | DOI | MR | Zbl

[3] M. Cwikel, Y. Sagher, P. Shvartsman, “A new look at the John–Nirenberg and John-Strömberg theorems for BMO”, J. Funct. Anal., 263:1 (2012), 129–166 | DOI | MR | Zbl

[4] M. de Guzmán, Differentiation of integrals in $R\sp{n}$, Lecture Notes in Mathematics, 481, Springer-Verlag, Berlin-New York, 1975 | MR

[5] E. Dobronravov, “A sharp symmetric integral form of the John–Nirenberg inequality”, Proc. Amer. Math. Soc., 152:5 (2024), 2087–2101 | MR | Zbl

[6] P. Ivanishvili, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskii, Bellman functions on simple non-convex domains in the plane, arXiv: 2305.03523

[7] P. Ivanisvili, N. N. Osipov, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, “Sharp estimates of integral functionals on classes of functions with small mean oscillation”, C. R. Math. Acad. Sci. Paris, 353:12 (2015), 1081–1085 | DOI | MR | Zbl

[8] P. Ivanisvili, N. N. Osipov, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, “Bellman function for extremal problems in BMO”, Trans. Amer. Math. Soc., 368:5 (2016), 3415–3468 | DOI | MR | Zbl

[9] P. Ivanisvili, N. N. Osipov, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, Bellman function for extremal problems in BMO, v. II, Mem. Amer. Math. Soc., 255, Evolution, no. 1220, 2018, v+133 pp. | MR

[10] F. John, “Quasi-isometric mappings”, Anal. Alg. Geom. e Topol., Seminari 1962/63, v. 2, Ist. Naz. Alta Mat, 1965, 462–473 | MR

[11] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl

[12] A. K. Lerner, “The John–Nirenberg inequality with sharp constants”, C. R. Math. Acad. Sci. Paris, 351:11–12 (2013), 463–466 | DOI | MR | Zbl

[13] A. A. Logunov, L. Slavin, D. M. Stolyarov, V. Vasyunin, P. B. Zatitskiy, “Weak integral conditions for BMO”, Proc. Amer. Math. Soc., 143:7 (2015), 2913–2926 | DOI | MR | Zbl

[14] Long, Rui Lin and Yang, Lo, “BMO functions in spaces of homogeneous type”, Sci. Sinica Ser. A, 27:7 (1984), 695–708 | MR | Zbl

[15] T. R. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970 | MR | Zbl

[16] Shi, Xian Liang, A. Torchinsky, “Local sharp maximal functions in spaces of homogeneous type”, Sci. Sinica Ser. A, 30:5 (1987), 473–480 | MR | Zbl

[17] L. Slavin, V. Vasyunin, “Sharp results in the integral-form John–Nirenberg inequality”, Trans. Amer. Math. Soc., 363:8 (2011), 4135–4169 | DOI | MR | Zbl

[18] L. Slavin, V. Vasyunin, “Sharp $L^p$ estimates on BMO”, Indiana Univ. Math. J., 61:3 (2012), 1051–1110 | DOI | MR | Zbl

[19] D. M. Stolyarov, P. B. Zatitskiy, “Theory of locally concave functions and its applications to sharp estimates of integral functionals”, Adv. Math., 291 (2016), 228–273 | DOI | MR | Zbl

[20] D. Stolyarov, V. Vasyunin, P. Zatitskiy, “Sharp multiplicative inequalities with BMO I”, J. Math. Anal. Appl., 492:2 (2020), 124479, 17 pp. | DOI | MR | Zbl

[21] D. Stolyarov, P. Zatitskiy, “Sharp transference principle for BMO and $A_p$”, J. Funct. Anal., 281:6 (2021), 109085, 21 pp. | DOI | MR | Zbl

[22] D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, “Monotonic rearrangements of functions with small mean oscillation”, Studia Math., 231:3 (2015), 257–267 | MR | Zbl

[23] J.-O. Strömberg, “Bounded mean oscillation with Orlicz norms and duality of Hardy spaces”, Indiana Univ. Math. J., 28:3 (1979), 511–544 | DOI | MR

[24] V. Vasyunin, A. Volberg, “Sharp constants in the classical weak form of the John–Nirenberg inequality”, Proc. Lond. Math. Soc. (3), 108:6 (2014), 1417–1434 | DOI | MR | Zbl

[25] V. Vasyunin, P. Zatitskiy, I. Zlotnikov, “Sharp multiplicative inequalities with BMO II”, J. Math. Anal. Appl., 515:2 (2022), 126430, 58 pp. | DOI | MR | Zbl

[26] V. I. Vasyunin, “Tochnaya konstanta v obratnom neravenstve Geldera dlya makenkhauptovskikh vesov”, Algebra i analiz, 15:1 (2003), 73–117

[27] A. A. Korenovskii, “O svyazi mezhdu srednimi kolebaniyami i tochnymi pokazatelyami summiruemosti funktsii”, Matem. Sb., 181:12 (1990), 1721–1727

[28] V. Vasyunin, L. Slavin, “Konstanta Dzhona–Nirenberga dlya prostranstva ${\rm BMO}^p$, $p>2$”, Algebra i analiz, 28:2 (2016), 72–96 | MR

[29] P. B. Zatitskii, D. M. Stolyarov, “O lokalno vognutykh funktsiyakh na prosteishikh nevypuklykh oblastyakh”, Zap. nauchn. sem. POMI, 512, 2022, 40–87