New Bellman induction and a weak version of BMO
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 64-93
Voir la notice de l'article provenant de la source Math-Net.Ru
We enlarge the area of applicability of the Bellman function method to estimates in the spirit of the John–Nirenberg inequality abandoning certain convexity assumptions. As an application, we consider a characteristic of a function that is much smaller than the BMO norm, but whose finiteness leads to the exponential integrability of the function.
@article{ZNSL_2024_537_a2,
author = {E. P. Dobronravov and P. B. Zatitskii and D. M. Stolyarov},
title = {New {Bellman} induction and a weak version of {BMO}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {64--93},
publisher = {mathdoc},
volume = {537},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/}
}
TY - JOUR AU - E. P. Dobronravov AU - P. B. Zatitskii AU - D. M. Stolyarov TI - New Bellman induction and a weak version of BMO JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 64 EP - 93 VL - 537 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/ LA - ru ID - ZNSL_2024_537_a2 ER -
E. P. Dobronravov; P. B. Zatitskii; D. M. Stolyarov. New Bellman induction and a weak version of BMO. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 64-93. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/