New Bellman induction and a weak version of BMO
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 64-93

Voir la notice de l'article provenant de la source Math-Net.Ru

We enlarge the area of applicability of the Bellman function method to estimates in the spirit of the John–Nirenberg inequality abandoning certain convexity assumptions. As an application, we consider a characteristic of a function that is much smaller than the BMO norm, but whose finiteness leads to the exponential integrability of the function.
@article{ZNSL_2024_537_a2,
     author = {E. P. Dobronravov and P. B. Zatitskii and D. M. Stolyarov},
     title = {New {Bellman} induction and a weak version of {BMO}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {64--93},
     publisher = {mathdoc},
     volume = {537},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/}
}
TY  - JOUR
AU  - E. P. Dobronravov
AU  - P. B. Zatitskii
AU  - D. M. Stolyarov
TI  - New Bellman induction and a weak version of BMO
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 64
EP  - 93
VL  - 537
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/
LA  - ru
ID  - ZNSL_2024_537_a2
ER  - 
%0 Journal Article
%A E. P. Dobronravov
%A P. B. Zatitskii
%A D. M. Stolyarov
%T New Bellman induction and a weak version of BMO
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 64-93
%V 537
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/
%G ru
%F ZNSL_2024_537_a2
E. P. Dobronravov; P. B. Zatitskii; D. M. Stolyarov. New Bellman induction and a weak version of BMO. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 64-93. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/