@article{ZNSL_2024_537_a2,
author = {E. P. Dobronravov and P. B. Zatitskii and D. M. Stolyarov},
title = {New {Bellman} induction and a weak version of {BMO}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {64--93},
year = {2024},
volume = {537},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/}
}
E. P. Dobronravov; P. B. Zatitskii; D. M. Stolyarov. New Bellman induction and a weak version of BMO. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 64-93. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a2/
[1] D Azagra, D. Stolyarov, Inner and outer smooth approximation of convex hypersurfaces. When is it possible?, Nonlinear Anal., 230 (2023), 113225, 20 pp. | DOI | MR | Zbl
[2] J. Canto, C. Pérez, E. Rela, “Minimal conditions for BMO”, J. Funct. Anal., 282:2 (2022), 109296, 21 pp. | DOI | MR | Zbl
[3] M. Cwikel, Y. Sagher, P. Shvartsman, “A new look at the John–Nirenberg and John-Strömberg theorems for BMO”, J. Funct. Anal., 263:1 (2012), 129–166 | DOI | MR | Zbl
[4] M. de Guzmán, Differentiation of integrals in $R\sp{n}$, Lecture Notes in Mathematics, 481, Springer-Verlag, Berlin-New York, 1975 | MR
[5] E. Dobronravov, “A sharp symmetric integral form of the John–Nirenberg inequality”, Proc. Amer. Math. Soc., 152:5 (2024), 2087–2101 | MR | Zbl
[6] P. Ivanishvili, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskii, Bellman functions on simple non-convex domains in the plane, arXiv: 2305.03523
[7] P. Ivanisvili, N. N. Osipov, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, “Sharp estimates of integral functionals on classes of functions with small mean oscillation”, C. R. Math. Acad. Sci. Paris, 353:12 (2015), 1081–1085 | DOI | MR | Zbl
[8] P. Ivanisvili, N. N. Osipov, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, “Bellman function for extremal problems in BMO”, Trans. Amer. Math. Soc., 368:5 (2016), 3415–3468 | DOI | MR | Zbl
[9] P. Ivanisvili, N. N. Osipov, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, Bellman function for extremal problems in BMO, v. II, Mem. Amer. Math. Soc., 255, Evolution, no. 1220, 2018, v+133 pp. | MR
[10] F. John, “Quasi-isometric mappings”, Anal. Alg. Geom. e Topol., Seminari 1962/63, v. 2, Ist. Naz. Alta Mat, 1965, 462–473 | MR
[11] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl
[12] A. K. Lerner, “The John–Nirenberg inequality with sharp constants”, C. R. Math. Acad. Sci. Paris, 351:11–12 (2013), 463–466 | DOI | MR | Zbl
[13] A. A. Logunov, L. Slavin, D. M. Stolyarov, V. Vasyunin, P. B. Zatitskiy, “Weak integral conditions for BMO”, Proc. Amer. Math. Soc., 143:7 (2015), 2913–2926 | DOI | MR | Zbl
[14] Long, Rui Lin and Yang, Lo, “BMO functions in spaces of homogeneous type”, Sci. Sinica Ser. A, 27:7 (1984), 695–708 | MR | Zbl
[15] T. R. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970 | MR | Zbl
[16] Shi, Xian Liang, A. Torchinsky, “Local sharp maximal functions in spaces of homogeneous type”, Sci. Sinica Ser. A, 30:5 (1987), 473–480 | MR | Zbl
[17] L. Slavin, V. Vasyunin, “Sharp results in the integral-form John–Nirenberg inequality”, Trans. Amer. Math. Soc., 363:8 (2011), 4135–4169 | DOI | MR | Zbl
[18] L. Slavin, V. Vasyunin, “Sharp $L^p$ estimates on BMO”, Indiana Univ. Math. J., 61:3 (2012), 1051–1110 | DOI | MR | Zbl
[19] D. M. Stolyarov, P. B. Zatitskiy, “Theory of locally concave functions and its applications to sharp estimates of integral functionals”, Adv. Math., 291 (2016), 228–273 | DOI | MR | Zbl
[20] D. Stolyarov, V. Vasyunin, P. Zatitskiy, “Sharp multiplicative inequalities with BMO I”, J. Math. Anal. Appl., 492:2 (2020), 124479, 17 pp. | DOI | MR | Zbl
[21] D. Stolyarov, P. Zatitskiy, “Sharp transference principle for BMO and $A_p$”, J. Funct. Anal., 281:6 (2021), 109085, 21 pp. | DOI | MR | Zbl
[22] D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, “Monotonic rearrangements of functions with small mean oscillation”, Studia Math., 231:3 (2015), 257–267 | MR | Zbl
[23] J.-O. Strömberg, “Bounded mean oscillation with Orlicz norms and duality of Hardy spaces”, Indiana Univ. Math. J., 28:3 (1979), 511–544 | DOI | MR
[24] V. Vasyunin, A. Volberg, “Sharp constants in the classical weak form of the John–Nirenberg inequality”, Proc. Lond. Math. Soc. (3), 108:6 (2014), 1417–1434 | DOI | MR | Zbl
[25] V. Vasyunin, P. Zatitskiy, I. Zlotnikov, “Sharp multiplicative inequalities with BMO II”, J. Math. Anal. Appl., 515:2 (2022), 126430, 58 pp. | DOI | MR | Zbl
[26] V. I. Vasyunin, “Tochnaya konstanta v obratnom neravenstve Geldera dlya makenkhauptovskikh vesov”, Algebra i analiz, 15:1 (2003), 73–117
[27] A. A. Korenovskii, “O svyazi mezhdu srednimi kolebaniyami i tochnymi pokazatelyami summiruemosti funktsii”, Matem. Sb., 181:12 (1990), 1721–1727
[28] V. Vasyunin, L. Slavin, “Konstanta Dzhona–Nirenberga dlya prostranstva ${\rm BMO}^p$, $p>2$”, Algebra i analiz, 28:2 (2016), 72–96 | MR
[29] P. B. Zatitskii, D. M. Stolyarov, “O lokalno vognutykh funktsiyakh na prosteishikh nevypuklykh oblastyakh”, Zap. nauchn. sem. POMI, 512, 2022, 40–87