A boundedness criterion for averaging operators in variable exponent spaces of periodic functions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 40-63
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A criterion for the uniform boundedness of Steklov averaging operators in variable exponent spaces of periodic functions is obtained. This criterion coincides with the known local analog of the Muckenhoupt condition. The boundedness of Steklov averages was previously known under the Dini–Lipschitz condition. The norms of averaging operators are estimated explicitly.
			
            
            
            
          
        
      @article{ZNSL_2024_537_a1,
     author = {O. L. Vinogradov},
     title = {A boundedness criterion for averaging operators in variable exponent spaces of periodic functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--63},
     publisher = {mathdoc},
     volume = {537},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/}
}
                      
                      
                    TY - JOUR AU - O. L. Vinogradov TI - A boundedness criterion for averaging operators in variable exponent spaces of periodic functions JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 40 EP - 63 VL - 537 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/ LA - ru ID - ZNSL_2024_537_a1 ER -
O. L. Vinogradov. A boundedness criterion for averaging operators in variable exponent spaces of periodic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 40-63. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/