A boundedness criterion for averaging operators in variable exponent spaces of periodic functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 40-63

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the uniform boundedness of Steklov averaging operators in variable exponent spaces of periodic functions is obtained. This criterion coincides with the known local analog of the Muckenhoupt condition. The boundedness of Steklov averages was previously known under the Dini–Lipschitz condition. The norms of averaging operators are estimated explicitly.
@article{ZNSL_2024_537_a1,
     author = {O. L. Vinogradov},
     title = {A boundedness criterion for averaging operators in variable exponent spaces of periodic functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--63},
     publisher = {mathdoc},
     volume = {537},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - A boundedness criterion for averaging operators in variable exponent spaces of periodic functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 40
EP  - 63
VL  - 537
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/
LA  - ru
ID  - ZNSL_2024_537_a1
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T A boundedness criterion for averaging operators in variable exponent spaces of periodic functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 40-63
%V 537
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/
%G ru
%F ZNSL_2024_537_a1
O. L. Vinogradov. A boundedness criterion for averaging operators in variable exponent spaces of periodic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 40-63. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/