@article{ZNSL_2024_537_a1,
author = {O. L. Vinogradov},
title = {A boundedness criterion for averaging operators in variable exponent spaces of periodic functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {40--63},
year = {2024},
volume = {537},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/}
}
O. L. Vinogradov. A boundedness criterion for averaging operators in variable exponent spaces of periodic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 40-63. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/
[1] O. L. Vinogradov, “Pryamye i obratnye teoremy teorii priblizhenii v banakhovykh idealnykh prostranstvakh”, Algebra i analiz, 35:6 (2023), 14–44
[2] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals, Univ. Press, Princeton, 1993 | MR | Zbl
[3] L. Diening, P. Harjulehto, P. Hästö, M. R{u}žička, Lebesgue and Sobolev spaces with variable exponents, LNM, 2017, Springer-Verlag, Berlin–Heidelberg, 2011 | MR | Zbl
[4] I. I. Sharapudinov, Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012
[5] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis, Springer, Basel, 2013 | MR | Zbl
[6] P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, LNM, 2236, Springer Nature Switzerland AG., 2019 | MR | Zbl
[7] X.-L. Fan, “Some results on variable exponent analysis”, More progresses in analysis, Proceedings of the 5th international ISAAC congress (Catania, Italy, July 25-30, 2005), eds. H. G. W. Begehr, F. Nicolosi, World Scientific, Singapore, 2009, 93–99 | DOI | MR | Zbl
[8] L. Diening, “Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces”, Bull. Sci. Math., 129:8 (2005), 657–700 | DOI | MR | Zbl
[9] T. Kopaliani, “Infimal convolution and Muckenhoupt $A_{p(~\cdot~)}$ condition in variable $L^p$ spaces”, Arch. Math., 89:2 (2007), 185–192 | DOI | MR | Zbl
[10] I. I. Sharapudinov, “O ravnomernoi ogranichennosti v $L^p$ ($p = p(x)$) nekotorykh semeistv operatorov svertki”, Mat. zametki, 59:2 (1996), 291–302 | DOI | Zbl
[11] T. N. Shakh-Emirov, “O ravnomernoi ogranichennosti v $L_{2\pi}^{p(x)}$ nekotorykh semeistv integralnykh operatorov svertki”, Vestnik Dagestanskogo nauchnogo tsentra RAN, 51 (2013), 13–17
[12] A. K. Lerner, “On some questions related to the maximal operator on variable $L^p$ spaces”, Trans. Amer. Math. Soc., 362:8 (2010), 4229–4242 | DOI | MR | Zbl
[13] D. V. Cruz-Uribe, A. Fiorenza, “Approximate identities in variable $L^p$ spaces”, Math. Nachr., 280:3 (2007), 256–270 | DOI | MR | Zbl
[14] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR
[15] A. D. Ioffe, V. M. Tikhomirov, “Dvoistvennost vypuklykh funktsii i ekstremalnye zadachi”, Uspekhi mat. nauk, 23:6(144) (1968), 51–116 | MR | Zbl
[16] R. T. Rockafellar, “Integrals which are convex functionals”, Pacific J. Math., 24:3 (1968), 525–539 | DOI | MR | Zbl
[17] M. Valadier, “Intégration de convexes fermés notamment d'épigraphes inf-convolution continue”, Revue française d'informatique et de recherche opérationnelle. Série rouge, 4:R2 (1970), 57–73 | MR | Zbl
[18] G. G. Khardi, D. E. Littlvud, G. Polia, Neravenstva, Gos. izd. inostrannoi literatury, M., 1948
[19] A. K. Lerner, A boundedness criterion for the maximal operator on variable Lebesgue spaces, 2023, arXiv: 2302.02475v2