A boundedness criterion for averaging operators in variable exponent spaces of periodic functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 40-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A criterion for the uniform boundedness of Steklov averaging operators in variable exponent spaces of periodic functions is obtained. This criterion coincides with the known local analog of the Muckenhoupt condition. The boundedness of Steklov averages was previously known under the Dini–Lipschitz condition. The norms of averaging operators are estimated explicitly.
@article{ZNSL_2024_537_a1,
     author = {O. L. Vinogradov},
     title = {A boundedness criterion for averaging operators in variable exponent spaces of periodic functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--63},
     year = {2024},
     volume = {537},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - A boundedness criterion for averaging operators in variable exponent spaces of periodic functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 40
EP  - 63
VL  - 537
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/
LA  - ru
ID  - ZNSL_2024_537_a1
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T A boundedness criterion for averaging operators in variable exponent spaces of periodic functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 40-63
%V 537
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/
%G ru
%F ZNSL_2024_537_a1
O. L. Vinogradov. A boundedness criterion for averaging operators in variable exponent spaces of periodic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 52, Tome 537 (2024), pp. 40-63. http://geodesic.mathdoc.fr/item/ZNSL_2024_537_a1/

[1] O. L. Vinogradov, “Pryamye i obratnye teoremy teorii priblizhenii v banakhovykh idealnykh prostranstvakh”, Algebra i analiz, 35:6 (2023), 14–44

[2] E. M. Stein, Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals, Univ. Press, Princeton, 1993 | MR | Zbl

[3] L. Diening, P. Harjulehto, P. Hästö, M. R{u}žička, Lebesgue and Sobolev spaces with variable exponents, LNM, 2017, Springer-Verlag, Berlin–Heidelberg, 2011 | MR | Zbl

[4] I. I. Sharapudinov, Nekotorye voprosy teorii priblizhenii v prostranstvakh Lebega s peremennym pokazatelem, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2012

[5] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis, Springer, Basel, 2013 | MR | Zbl

[6] P. Harjulehto, P. Hästö, Orlicz spaces and generalized Orlicz spaces, LNM, 2236, Springer Nature Switzerland AG., 2019 | MR | Zbl

[7] X.-L. Fan, “Some results on variable exponent analysis”, More progresses in analysis, Proceedings of the 5th international ISAAC congress (Catania, Italy, July 25-30, 2005), eds. H. G. W. Begehr, F. Nicolosi, World Scientific, Singapore, 2009, 93–99 | DOI | MR | Zbl

[8] L. Diening, “Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces”, Bull. Sci. Math., 129:8 (2005), 657–700 | DOI | MR | Zbl

[9] T. Kopaliani, “Infimal convolution and Muckenhoupt $A_{p(~\cdot~)}$ condition in variable $L^p$ spaces”, Arch. Math., 89:2 (2007), 185–192 | DOI | MR | Zbl

[10] I. I. Sharapudinov, “O ravnomernoi ogranichennosti v $L^p$ ($p = p(x)$) nekotorykh semeistv operatorov svertki”, Mat. zametki, 59:2 (1996), 291–302 | DOI | Zbl

[11] T. N. Shakh-Emirov, “O ravnomernoi ogranichennosti v $L_{2\pi}^{p(x)}$ nekotorykh semeistv integralnykh operatorov svertki”, Vestnik Dagestanskogo nauchnogo tsentra RAN, 51 (2013), 13–17

[12] A. K. Lerner, “On some questions related to the maximal operator on variable $L^p$ spaces”, Trans. Amer. Math. Soc., 362:8 (2010), 4229–4242 | DOI | MR | Zbl

[13] D. V. Cruz-Uribe, A. Fiorenza, “Approximate identities in variable $L^p$ spaces”, Math. Nachr., 280:3 (2007), 256–270 | DOI | MR | Zbl

[14] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR

[15] A. D. Ioffe, V. M. Tikhomirov, “Dvoistvennost vypuklykh funktsii i ekstremalnye zadachi”, Uspekhi mat. nauk, 23:6(144) (1968), 51–116 | MR | Zbl

[16] R. T. Rockafellar, “Integrals which are convex functionals”, Pacific J. Math., 24:3 (1968), 525–539 | DOI | MR | Zbl

[17] M. Valadier, “Intégration de convexes fermés notamment d'épigraphes inf-convolution continue”, Revue française d'informatique et de recherche opérationnelle. Série rouge, 4:R2 (1970), 57–73 | MR | Zbl

[18] G. G. Khardi, D. E. Littlvud, G. Polia, Neravenstva, Gos. izd. inostrannoi literatury, M., 1948

[19] A. K. Lerner, A boundedness criterion for the maximal operator on variable Lebesgue spaces, 2023, arXiv: 2302.02475v2