Voir la notice du chapitre de livre
@article{ZNSL_2024_536_a9,
author = {S. A. Nazarov},
title = {Asymptotics of the spectrum of a boundary-value problem with the {Steklov} condition on small sets periodically distributed along a contour},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {178--227},
year = {2024},
volume = {536},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a9/}
}
TY - JOUR AU - S. A. Nazarov TI - Asymptotics of the spectrum of a boundary-value problem with the Steklov condition on small sets periodically distributed along a contour JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 178 EP - 227 VL - 536 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a9/ LA - ru ID - ZNSL_2024_536_a9 ER -
%0 Journal Article %A S. A. Nazarov %T Asymptotics of the spectrum of a boundary-value problem with the Steklov condition on small sets periodically distributed along a contour %J Zapiski Nauchnykh Seminarov POMI %D 2024 %P 178-227 %V 536 %U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a9/ %G ru %F ZNSL_2024_536_a9
S. A. Nazarov. Asymptotics of the spectrum of a boundary-value problem with the Steklov condition on small sets periodically distributed along a contour. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 178-227. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a9/
[1] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[2] E. Sanchez-Palencia, “Boundary value problems in domains containing perforated walls”, Nonlinear Partial Differential Equations and Their Applications (Collège de France Seminar), v. III, Res. Notes in Math., 70, Pitman, Boston, 1982, 309–325 | MR
[3] A. Damlamian, Ta-Tsien Li, “Boundary homogenization for elliptic problems”, J. Math. Pures Appl., 66:4 (1987), 351–361 | MR | Zbl
[4] E. Pérez, “On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem”, Discrete Contin. Dyn. Syst. Ser. B, 7:4 (2007), 859–883 | MR
[5] A. G. Chechkina, “Usrednenie spektralnykh zadach s singulyarnym vozmuscheniem usloviya Steklova”, Izvestiya RAN. Ser. matem., 81:1 (2017), 203–240 | DOI | MR | Zbl
[6] D. Gomez, S. A. Nazarov , E. Perez, “Homogenization of Winkler–Steklov spectral conditions in three-dimensional linear elasticity”, Z. Angew. Math. Phys., 69:2 (2018), 35 | DOI | MR | Zbl
[7] R. R. Gadylshin, A. L. Pyatnitskii, G. A. Chechkin, “Ob asimptotikakh sobstvennykh znachenii kraevoi zadachi v ploskoi oblasti tipa sita Steklova”, Izvestiya RAN. Ser. matem., 82:6 (2018), 37–64 | DOI | MR | Zbl
[8] N. G. Kuznetsov, V. G. Mazia, B. R. Vainberg, Linear Water Waves: A mathematical approach, Cambridge Univ. Pr., Cambridge, 2002 | MR | Zbl
[9] V. Chiado Piat, S.A. Nazarov, “Steklov spectral problems in a set with a thin toroidal hole”, Partial Differential Equations in Applied Mathematics, 1 (2020), 100007 | DOI
[10] A. Herrot, Extremum problems for eigenvalues of elliptic operators, Birkhäuser Verlag, Basel, 2006 | MR
[11] V. A. Kondratev, “O gladkosti reshenii zadachi Dirikhle dlya uravneniya vtorogo poryadka v okrestnosti rebra”, Differentsialnye uravneniya, 6:10 (1970), 1831–1843 | Zbl
[12] V. G. Mazya, B. A. Plamenevskii, “Ob ellipticheskikh kraevykh zadachakh v oblastyakh s kusochno gladkoi granitsei”, Trudy simp. po mekh. sploshn. sred i rodstvennym probl. analiza, v. 1, Metsniereba, Tbilisi, 1973, 171–181
[13] V. A. Kondratev, “Osobennosti reshenii zadachi Dirikhle dlya uravneniya vtorogo poryadka v okrestnosti rebra”, Differentsialnye uravneniya, 13:11 (1977), 2026–2032 | MR | Zbl
[14] V. G. Maz'ja, J. Rosmann, “Über die Asymptotik der Lösungen elliptisher Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53 | DOI | MR | Zbl
[15] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR
[16] S. A. Nazarov, “Vyvod variatsionnogo neravenstva dlya formy malogo prirascheniya treschiny otryva”, Mekhanika tverdogo tela, 1989, no. 2, 152–160
[17] E. Sanches-Palensiya, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR
[18] N. S. Bakhvalov, G. P. Panasenko, Osrednenie prtsessov v periodicheskikh sredakh, Nauka, M., 1984
[19] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993
[20] A. L. Pyatnitskii, G. A. Chechkin, A. S. Shamaev, Usrednenie. Metody i prilozheniya, Tamara Rozhkovskaya, Novosibirsk, 2007 | MR
[21] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292
[22] V. A. Kozlov, V. G. Maz'ya, J. Rossman, Elliptic boundary value problems in domains with point singularities, Amer. Math. Soc., Providence, 1997 | MR | Zbl
[23] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda-Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82
[24] M. Vanninathan, “Homogenization of eigenvalue problems in perforated domains”, Proc. Indian Acad. Sci. Math. Sci., 90:3 (1981), 239–271 | DOI | MR | Zbl
[25] W. Kirsch, B. Simon, “Comparison theorems for the gap of Schrodinger operators”, J. Funct. Anal., 75:2 (1987), 396–410 | DOI | MR | Zbl
[26] T. A. Mel'nyk, “Vibrations of a thick periodic junction with concentrated masses”, Math. Models Methods Appl. Sci., 11:6 (2001), 1001–1027 | DOI | MR | Zbl
[27] S. A. Nazarov, M. E. Perez, “On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary”, Revista Matemática Complutense, 31:1 (2018), 1–62 | DOI | MR | Zbl
[28] E. B. Daners, B. Simon, “Ultracontractivity and the heat kernel for Schrodinger operators and Dirichlet Laplacians”, J. Funct. Anal., 59 (1984), 335–395 | DOI | MR
[29] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i Analiz, 15:5 (2003), 1–108
[30] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | DOI | MR | Zbl
[31] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980
[32] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | Zbl
[33] L. Khermander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, izd-vo Mir, M., 1965
[34] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Birkhäuser Verlag, Basel, 2000 | MR | MR
[35] S. A. Nazarov, “Asimptotika sobstvennykh chisel zadachi Neimana pri kontsentratsii mass na tonkom toroidalnom mnozhestve”, Vestnik SPbGU Ser. 1, Vyp. 3, 2006, no. 15, 61–71
[36] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Doklady AN SSSR, 73 (1950), 1117–1120 | Zbl
[37] M. Reed, B. Simon, Methods of modern mathematical physics, v. 3, Academic Press Inc., New York, 1980 | MR | Zbl
[38] P. Kuchment, Floquet theory for partial differential equations, Birchäuser, Basel, 1993 | MR | Zbl
[39] I. V. Kamotskii, S. A. Nazarov, “O sobstvennykh funktsiyakh, lokalizovannykh okolo kromki tonkoi oblasti”, Problemy matem. analiza, 19, Nauchn. kniga, Novosibirsk, 1999, 105–148
[40] L. Friedlander, M. Solomyak, “On the spectrum of the Dirichlet Laplacian in a narrow strip”, Israel J. Math., 170 (2009), 337–354 | DOI | MR | Zbl
[41] D. Borisov, P. Freitas, “Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains”, Ann. Inst. Henri Poincaré. Anal. Non Linèaire, 26:2 (2009), 547–560 | MR | Zbl
[42] D. Borisov, P. Freitas, “Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in $\mathbb{R}^d$”, J. Funct. Anal., 258:3 (2010), 893–912 | DOI | MR | Zbl
[43] S. A. Nazarov, E. Perez, J. Taskinen, “Localization effect for Dirichlet eigenfunctions in thin non-smooth domains”, Transactions of the American Mathematical Society, 368:7 (2016), 4787–4829 | DOI | MR | Zbl
[44] V. G. Mazya, S. A. Nazarov, A. B. Plamenevskii, “Ob asimptotike reshenii zadachi Dirikhle v trekhmernoi oblasti s vyrezannym tonkim telom”, Doklady AN SSSR, 256:1 (1981), 37–39 | MR | Zbl
[45] M. V. Fedoryuk, “Difraktsiya ploskoi volny na vytyanutom tele vrascheniya”, Doklady AN SSSR, 272:3 (1983), 587–590 | MR