@article{ZNSL_2024_536_a8,
author = {A. Mikhailov and V. Mikhailov},
title = {Inverse problem for semi-infinite {Jacobi} matrices and associated {Hilbert} spaces of analytic functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {156--177},
year = {2024},
volume = {536},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a8/}
}
TY - JOUR AU - A. Mikhailov AU - V. Mikhailov TI - Inverse problem for semi-infinite Jacobi matrices and associated Hilbert spaces of analytic functions JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 156 EP - 177 VL - 536 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a8/ LA - en ID - ZNSL_2024_536_a8 ER -
A. Mikhailov; V. Mikhailov. Inverse problem for semi-infinite Jacobi matrices and associated Hilbert spaces of analytic functions. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 156-177. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a8/
[1] N. I. Akhiezer, The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965 | Zbl
[2] F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York–London, 1964 | MR | Zbl
[3] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl
[4] M. I. Belishev, “Boundary control and tomography of Riemannian manifolds (the BC-method)”, Usp. Matem. Nauk, 72:4 (2017), 3–66 | DOI | MR | Zbl
[5] C. Berg, Y. Chen, M. E. H. Ismail, “Small eigenvalues of large Hankel matrices: The indeterminate case”, Math. Scandinavica, 91 (2002), 67–81 | DOI | MR | Zbl
[6] C. Berg, R. Szwarc, “Inverse of infinite hankel moment matrices”, Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 14 (2018) | MR
[7] C. Berg, R. Szwarc, “Closable hankel operators and moment problems”, Integral Equations and Operator Theory, 92:1 (2020), 5 | DOI | MR | Zbl
[8] L. de Branges, Hilbert Space of Entire Functions, Prentice-Hall, NJ, 1968 | MR
[9] H. Dym, H. P. McKean, Gaussian Processes, Function Theory, and the Inverse Spectral Problem, Academic Press, New York etc., 1976 | MR | Zbl
[10] A. S. Mikhaylov, V. S. Mikhaylov, “Inverse dynamic problems for canonical systems and de Branges spaces”, Nanosystems: Physics, Chemistry, Mathematics, 9:2 (2018), 215–224 | DOI | MR
[11] A. S. Mikhaylov, V. S. Mikhaylov, “Boundary control method and de Branges spaces. Schrödinger operator, Dirac system, discrete Schrödinger operator”, J. Math. Anal. Appl., 460:2 (2018), 927–953 | DOI | MR | Zbl
[12] A. S. Mikhaylov, V. S. Mikhaylov, “Dynamic inverse problem for Jacobi matrices”, Inverse Problems and Imaging, 13:3 (2019), 431–447 | DOI | MR | Zbl
[13] A. S. Mikhaylov, V. S. Mikhaylov, “On application of the Boundary control method to classical moment problems”, J. Phys.: Conference Series, 2092:1 (2021), 012002 | DOI
[14] A. S. Mikhaylov, V. S. Mikhaylov, “Inverse problem for dynamical system associated with Jacobi matrices and classical moment problems”, J. Math. Anal. Appl., 487:1 (2020) | DOI | MR | Zbl
[15] A. S. Mikhaylov, V. S. Mikhaylov, “On a special Hilbert space of functions associated with the multidimensional wave equation in a bounded domain”, IEEE Conference Proceedings: Days on Diffraction'2022, 2022, 101–105
[16] C. Remling, “Schrödinger operators and de Branges spaces”, J. Funct. Anal., 196:2 (2002), 323–394 | DOI | MR | Zbl
[17] R. V. Romanov, Canonical systems and de Branges spaces, arXiv: 1408.6022
[18] B. Simon, “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137 (1998), 82–203 | DOI | MR | Zbl
[19] K. Schmüdgen, The Moment Problem, Springer International Publishing, Cham, 2017 | MR | Zbl
[20] D. R. Yafaev, “Unbounded Hankel operators and moment problems”, Integral Equations and Operator Theory, 85:2 (2016), 289–301 | DOI | MR
[21] D. R. Yafaev, “Correction to: unbounded Hankel operators and moment problems (integral equations and operator theory)”, Integral Equations and Operator Theory, 91:5 (2019) | DOI | MR | Zbl