Inverse problem for semi-infinite Jacobi matrices and associated Hilbert spaces of analytic functions
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 156-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the dynamic problems for the discrete systems with discrete time associated with finite and semi-infinite Jacobi matrices. The result of the paper is a procedure of association of special Hilbert spaces of functions, namely de Branges space, playing an important role in the inverse spectral theory, with these systems. We point out the relationships with the classical moment problems theory and compare properties of classical Hankel matrices associated with moment problems with properties of matrices of connecting operators associated with dynamical systems.
@article{ZNSL_2024_536_a8,
     author = {A. Mikhailov and V. Mikhailov},
     title = {Inverse problem for semi-infinite {Jacobi} matrices and associated {Hilbert} spaces of analytic functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {156--177},
     year = {2024},
     volume = {536},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a8/}
}
TY  - JOUR
AU  - A. Mikhailov
AU  - V. Mikhailov
TI  - Inverse problem for semi-infinite Jacobi matrices and associated Hilbert spaces of analytic functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 156
EP  - 177
VL  - 536
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a8/
LA  - en
ID  - ZNSL_2024_536_a8
ER  - 
%0 Journal Article
%A A. Mikhailov
%A V. Mikhailov
%T Inverse problem for semi-infinite Jacobi matrices and associated Hilbert spaces of analytic functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 156-177
%V 536
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a8/
%G en
%F ZNSL_2024_536_a8
A. Mikhailov; V. Mikhailov. Inverse problem for semi-infinite Jacobi matrices and associated Hilbert spaces of analytic functions. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 156-177. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a8/

[1] N. I. Akhiezer, The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965 | Zbl

[2] F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York–London, 1964 | MR | Zbl

[3] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl

[4] M. I. Belishev, “Boundary control and tomography of Riemannian manifolds (the BC-method)”, Usp. Matem. Nauk, 72:4 (2017), 3–66 | DOI | MR | Zbl

[5] C. Berg, Y. Chen, M. E. H. Ismail, “Small eigenvalues of large Hankel matrices: The indeterminate case”, Math. Scandinavica, 91 (2002), 67–81 | DOI | MR | Zbl

[6] C. Berg, R. Szwarc, “Inverse of infinite hankel moment matrices”, Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 14 (2018) | MR

[7] C. Berg, R. Szwarc, “Closable hankel operators and moment problems”, Integral Equations and Operator Theory, 92:1 (2020), 5 | DOI | MR | Zbl

[8] L. de Branges, Hilbert Space of Entire Functions, Prentice-Hall, NJ, 1968 | MR

[9] H. Dym, H. P. McKean, Gaussian Processes, Function Theory, and the Inverse Spectral Problem, Academic Press, New York etc., 1976 | MR | Zbl

[10] A. S. Mikhaylov, V. S. Mikhaylov, “Inverse dynamic problems for canonical systems and de Branges spaces”, Nanosystems: Physics, Chemistry, Mathematics, 9:2 (2018), 215–224 | DOI | MR

[11] A. S. Mikhaylov, V. S. Mikhaylov, “Boundary control method and de Branges spaces. Schrödinger operator, Dirac system, discrete Schrödinger operator”, J. Math. Anal. Appl., 460:2 (2018), 927–953 | DOI | MR | Zbl

[12] A. S. Mikhaylov, V. S. Mikhaylov, “Dynamic inverse problem for Jacobi matrices”, Inverse Problems and Imaging, 13:3 (2019), 431–447 | DOI | MR | Zbl

[13] A. S. Mikhaylov, V. S. Mikhaylov, “On application of the Boundary control method to classical moment problems”, J. Phys.: Conference Series, 2092:1 (2021), 012002 | DOI

[14] A. S. Mikhaylov, V. S. Mikhaylov, “Inverse problem for dynamical system associated with Jacobi matrices and classical moment problems”, J. Math. Anal. Appl., 487:1 (2020) | DOI | MR | Zbl

[15] A. S. Mikhaylov, V. S. Mikhaylov, “On a special Hilbert space of functions associated with the multidimensional wave equation in a bounded domain”, IEEE Conference Proceedings: Days on Diffraction'2022, 2022, 101–105

[16] C. Remling, “Schrödinger operators and de Branges spaces”, J. Funct. Anal., 196:2 (2002), 323–394 | DOI | MR | Zbl

[17] R. V. Romanov, Canonical systems and de Branges spaces, arXiv: 1408.6022

[18] B. Simon, “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137 (1998), 82–203 | DOI | MR | Zbl

[19] K. Schmüdgen, The Moment Problem, Springer International Publishing, Cham, 2017 | MR | Zbl

[20] D. R. Yafaev, “Unbounded Hankel operators and moment problems”, Integral Equations and Operator Theory, 85:2 (2016), 289–301 | DOI | MR

[21] D. R. Yafaev, “Correction to: unbounded Hankel operators and moment problems (integral equations and operator theory)”, Integral Equations and Operator Theory, 91:5 (2019) | DOI | MR | Zbl