On finding bifurcations for nonvariational elliptic systems by the extended quotients method
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 140-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We develop a new method for finding bifurcations for nonlinear systems of equations based on a direct finding of bifurcations through saddle points of extended quotients. The method is applied to find the saddle-node bifurcation point for system of elliptic equations with the nonlinearity of the general convex-concave type. The main result justifies the variational formula for the detection of the maximal saddle-node type bifurcation point of stable positive solutions. As a consequence, a precise threshold value separating the interval of the existence of stable positive solutions is established.
@article{ZNSL_2024_536_a7,
     author = {Ya. Il'yasov},
     title = {On finding bifurcations for nonvariational elliptic systems by the extended quotients method},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--155},
     year = {2024},
     volume = {536},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a7/}
}
TY  - JOUR
AU  - Ya. Il'yasov
TI  - On finding bifurcations for nonvariational elliptic systems by the extended quotients method
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 140
EP  - 155
VL  - 536
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a7/
LA  - en
ID  - ZNSL_2024_536_a7
ER  - 
%0 Journal Article
%A Ya. Il'yasov
%T On finding bifurcations for nonvariational elliptic systems by the extended quotients method
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 140-155
%V 536
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a7/
%G en
%F ZNSL_2024_536_a7
Ya. Il'yasov. On finding bifurcations for nonvariational elliptic systems by the extended quotients method. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 140-155. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a7/

[1] C. O. Alves, D. G. De Figueiredo, “Nonvariational elliptic systems via Galerkin methods”, Function Spaces, Differential Operators and Nonlinear Analysis, The Hans Triebel Anniversary Volume, 2003, 47–57 | DOI | MR | Zbl

[2] A. Ambrosetti, H. Brezis, G. Cerami, “Combined effects of concave and convex nonlinearities in some elliptic problems”, J. Funct. Anal., 122:2 (1994), 519–543 | DOI | MR | Zbl

[3] H. Brezis, L. Oswald, “Remarks on sublinear elliptic equations”, Nonlinear Analysis: Theory, Methods Applications, 10:1 (1986), 55–64 | DOI | MR | Zbl

[4] K. J. Brown, M. M. A. Ibrahim, R. Shivaji, “S-shaped bifurcation curves”, Nonlinear Analysis: Theory, Methods Applications, 5:5 (1981), 475–486 | DOI | MR | Zbl

[5] L. Caffarelli, S. Patrizi, V. Quitalo, “On a long range segregation model.”, J. Europ. Math. Soc., 19:12 (2017) | DOI | MR | Zbl

[6] M. L. Carvalho, Y. Il'yasov, C. A. Santos, “Existence of S-shaped type bifurcation curve with dual cusp catastrophe via variational methods”, J. Dif. Eq., 334 (2022), 256–279 | DOI | MR | Zbl

[7] M. Clapp, A. Szulkin, “Non-variational weakly coupled elliptic systems”, Anal. Math. Phys., 12:2 (2022), 57 | DOI | MR | Zbl

[8] M. G. Crandall, P. H. Rabinowitz, “Bifurcation, perturbation of simple eigenvalues, and linearized stability”, Arch. Rat. Mech. Anal., 52:2 (1973), 161–180 | DOI | MR | Zbl

[9] M. G. Crandall, P. H. Rabinowitz, “Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems”, Arch. Ration. Mech. Anal., 58 (1975), 207–218 | DOI | MR | Zbl

[10] E. C. M. Crooks, E. N. Dancer, “Highly nonlinear large-competition limits of elliptic systems”, Nonlinear Analysis: Theory, Methods Applications, 73:5 (2010), 1447–1457 | DOI | MR | Zbl

[11] L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Monographs and Surveys in Pure and Applied Mathematics, 143, Chapman Hall/CRC, Boca Raton, FL, 2011 | MR | Zbl

[12] J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1964 | MR

[13] I. Ekeland, “On the variational principle”, J. Math. Anal. Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl

[14] M. Escobedo, T. Cazenave, F. Dickstein, “A semilinear heat equation with concaveconvex nonlinearity”, Rend. Mat. Appl. (7), 19 (1999), 211–242 | MR | Zbl

[15] D. De Figueiredo, “Semilinear elliptic systems: Existence, multiplicity, symmetry of solutions”, Handbook of Differential Equations: Stationary Partial Differential Equations, v. 5, 2008, 1–48 | MR | Zbl

[16] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 1977 | MR | Zbl

[17] R. Gilmore, Catastrophe theory for scientists and engineers, Courier Corporation, 1993 | MR

[18] X. He, M. Squassina, W. Zou, “The Nehari manifold for fractional systems involving critical nonlinearities”, Commun. Pure Appl. Anal., 15:4 (2016), 1285–1308 | DOI | MR | Zbl

[19] T. S. Hsu, H. L. Lin, “Multiple positive solutions for a critical elliptic system with concave-convex nonlinearities”, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 139:6 (2009), 1163–1177 | DOI | MR | Zbl

[20] Y. S. Il'yasov, “Bifurcation calculus by the extended functional method”, Funct. Anal. Appl., 41:1 (2007), 18–30 | DOI | MR | Zbl

[21] Y. Il'yasov, “A duality principle corresponding to the parabolic equations”, Physica D, 237:5 (2008), 692–698 | DOI | MR | Zbl

[22] Y. S. Il'yasov, A. E. Ivanov, “Finding bifurcations for solutions of nonlinear equations by quadratic programming methods”, Comp. Math. Math. Phys., 53:3 (2013), 350–364 | DOI | Zbl

[23] Y. S. Il'yasov, A. E. Ivanov, “Computation of maximal turning points to nonlinear equations by nonsmooth optimization”, Opt. Meth. Softw., 31:1 (2016), 1–23 | DOI | MR | Zbl

[24] Y. Ilyasov, “Finding Saddle-Node Bifurcations via a Nonlinear Generalized Collatz-Wielandt Formula”, International Journal of Bifurcation and Chaos, 31:01 (2021), 2150008 | DOI | MR | Zbl

[25] Y. Il'yasov, “A finding of the maximal saddle-node bifurcation for systems of differential equations”, J. Diff. Eq., 378 (2024), 610–625 | DOI | MR | Zbl

[26] H. B. Keller, “Numerical solution of bifurcation and nonlinear eigenvalue problems”, Application of bifurcation theory, ed. 2, ed. Rabinowitz P., Academic Press, New York, 1977, 59–384 | MR

[27] H. Kielhöfer, Bifurcation theory: An introduction with applications to PDEs, Applied Mathematical Sciences, 156, Springer Science Business Media, 2006 | MR

[28] P. Korman, “On uniqueness of positive solutions for a class of semilinear equations”, Discrete and Continuous Dynamical Systems, 8:4 (2002), 865–872 | DOI | MR

[29] Y. A. Kuznetsov, Elements of applied bifurcation theory, Applied Mathematical Sciences, 112, Springer Science Business Media, 2013 | MR

[30] O. Ladyzhenskaya, N. Uraltseva, Linear and quasilinear elliptic equations, Acad. Press, New York, 1968 | MR | Zbl

[31] T. Ouyang, J. Shi, “Exact multiplicity of positive solutions for a class of semilinear problem, II”, J. Diff. Eq., 158:1 (1999), 94–151 | DOI | MR | Zbl

[32] P. D. Salazar, Y. Ilyasov, L. F. Alberto, E. C. Costa, M. B. Salles, “Saddle-node bifurcations of power systems in the context of variational theory and nonsmooth optimization”, IEEE Access, 8 (2020), 110986–110993 | DOI

[33] R. Seydel, Practical Bifurcation and Stability Analysis, Interdisciplinary Applied Mathematics, 5, Springer, 2010 | DOI | MR | Zbl

[34] M. Tang, “Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities”, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 133:3 (2003), 705–717 | DOI | MR | Zbl

[35] N. N. Ural'tseva, “Boundary-value problems for quasi-linear elliptic equations and systems with principal part of divergence type”, Dokl. Akad. Nauk SSSR, 147:2 (1962), 313–316 | MR | Zbl

[36] T.F. Wu, “The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions”, Nonl. Anal., Th. Meth. Appl., 68:6 (2008), 1733–1745 | DOI | MR | Zbl