Voir la notice du chapitre de livre
@article{ZNSL_2024_536_a6,
author = {D. V. Bystrov and A. I. Nazarov},
title = {The {Robin} problem for quasilinear equations with critical growth of the right-hand side},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {126--139},
year = {2024},
volume = {536},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/}
}
TY - JOUR AU - D. V. Bystrov AU - A. I. Nazarov TI - The Robin problem for quasilinear equations with critical growth of the right-hand side JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 126 EP - 139 VL - 536 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/ LA - ru ID - ZNSL_2024_536_a6 ER -
D. V. Bystrov; A. I. Nazarov. The Robin problem for quasilinear equations with critical growth of the right-hand side. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 126-139. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/
[1] Adimurthi, G. Mancini, “The Neumann problem for elliptic equations with critical nonlinearity”, Nonlinear Analysis, Sc. Norm. Super. di Pisa Quaderni, 1991, 9–25 | MR | Zbl
[2] T. Aubin, “Problémes isopérimétriques et espaces de Sobolev”, J. Diff. Geom., 11 (1976), 573–598 | MR | Zbl
[3] H. Brezis, L. Nirenberg, “Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents”, Comm. Pure Appl. Math., 36 (1983), 437–477 | DOI | MR | Zbl
[4] A. V. Demyanov, A. I. Nazarov, “O suschestvovanii ekstremalnoi funktsii v teoremakh vlozheniya Soboleva s predelnym pokazatelem”, Algebra i Analiz, 17:5 (2005), 105–140
[5] B. Gidas, W.-M. Ni, L. Nirenberg, “Symmetry and Related Properties via the Maximum Principle”, Comm. Math. Phys., 68 (1979), 209–243 | DOI | MR | Zbl
[6] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, v. 5, Nauka, M., 1971 | MR
[7] P.-L. Lions, “The concentration-compactness principle in the Calculus of Variations. The limit case”, Rev. Mat. Iberoam., 1 (1985), 45–121 ; 145–201 | DOI | MR | Zbl | Zbl
[8] P.-L. Lions, F. Pacella, M. Tricarico, “Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions”, Indiana Univ. Math. J., 37:2 (1988), 301–324 | DOI | MR | Zbl
[9] A. I. Nazarov, “Dirichlet and Neumann problems to critical Emden-Fowler type equations”, J. Global Optim., 40 (2008), 289–303 | DOI | MR | Zbl
[10] A. I. Nazarov, A. B. Reznikov, “Attainability of infima in the critical Sobolev trace embedding theorem on manifolds”, AMS Transl. Series 2, 229 (2010), 197–210 | MR | Zbl
[11] A. I. Nazarov, A. P. Scheglova, “O nekotorykh svoistvakh ekstremali v variatsionnoi zadache, porozhdennoi teoremoi vlozheniya Soboleva”, Nelin. zadachi i teoriya funktsii, PMA, 27, T. Rozhkovskaya, Novosib., 2004, 109–136
[12] S. I. Pokhozhaev, “O sobstvennykh funktsiyakh uravneniya $\Delta u + \lambda f(u) = 0$”, Dokl. AN SSSR, 165:1 (1965), 36–39 | Zbl
[13] G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura Appl., 110 (1976), 353–372 | DOI | MR | Zbl
[14] P. Tolksdorf, “On the Dirichlet problem for Quasilinear Equations in Domains with Conical Boundary Points”, Comm. PDE, 8:7 (1983), 773–817 | DOI | MR | Zbl
[15] N. S. Trudinger, “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. Pure Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl
[16] X. J. Wang, “Neumann problems of semilinear elliptic equations involving critical Sobolev exponents”, J. Diff. Eqs, 93:2 (1991), 283–310 | DOI | MR | Zbl