The Robin problem for quasilinear equations with critical growth of the right-hand side
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 126-139
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Robin problem for an equation driven by $p$-Laplacian with a critical right-hand side. For the semilinear case ($p=2$), this problem was investigated by X.-J. Wang (1991). We use a variant of the concentration-compactness method by P.-L. Lions and give some sharp sufficient conditions for the existence of the least energy solution.
@article{ZNSL_2024_536_a6,
author = {D. V. Bystrov and A. I. Nazarov},
title = {The {Robin} problem for quasilinear equations with critical growth of the right-hand side},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {126--139},
publisher = {mathdoc},
volume = {536},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/}
}
TY - JOUR AU - D. V. Bystrov AU - A. I. Nazarov TI - The Robin problem for quasilinear equations with critical growth of the right-hand side JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 126 EP - 139 VL - 536 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/ LA - ru ID - ZNSL_2024_536_a6 ER -
D. V. Bystrov; A. I. Nazarov. The Robin problem for quasilinear equations with critical growth of the right-hand side. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 126-139. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/