The Robin problem for quasilinear equations with critical growth of the right-hand side
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 126-139

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Robin problem for an equation driven by $p$-Laplacian with a critical right-hand side. For the semilinear case ($p=2$), this problem was investigated by X.-J. Wang (1991). We use a variant of the concentration-compactness method by P.-L. Lions and give some sharp sufficient conditions for the existence of the least energy solution.
@article{ZNSL_2024_536_a6,
     author = {D. V. Bystrov and A. I. Nazarov},
     title = {The {Robin} problem for quasilinear equations with critical growth of the right-hand side},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {126--139},
     publisher = {mathdoc},
     volume = {536},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/}
}
TY  - JOUR
AU  - D. V. Bystrov
AU  - A. I. Nazarov
TI  - The Robin problem for quasilinear equations with critical growth of the right-hand side
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 126
EP  - 139
VL  - 536
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/
LA  - ru
ID  - ZNSL_2024_536_a6
ER  - 
%0 Journal Article
%A D. V. Bystrov
%A A. I. Nazarov
%T The Robin problem for quasilinear equations with critical growth of the right-hand side
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 126-139
%V 536
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/
%G ru
%F ZNSL_2024_536_a6
D. V. Bystrov; A. I. Nazarov. The Robin problem for quasilinear equations with critical growth of the right-hand side. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 126-139. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/