The Robin problem for quasilinear equations with critical growth of the right-hand side
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 126-139
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the Robin problem for an equation driven by $p$-Laplacian with a critical right-hand side. For the semilinear case ($p=2$), this problem was investigated by X.-J. Wang (1991). We use a variant of the concentration-compactness method by P.-L. Lions and give some sharp sufficient conditions for the existence of the least energy solution.
@article{ZNSL_2024_536_a6,
     author = {D. V. Bystrov and A. I. Nazarov},
     title = {The {Robin} problem for quasilinear equations with critical growth of the right-hand side},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {126--139},
     year = {2024},
     volume = {536},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/}
}
TY  - JOUR
AU  - D. V. Bystrov
AU  - A. I. Nazarov
TI  - The Robin problem for quasilinear equations with critical growth of the right-hand side
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 126
EP  - 139
VL  - 536
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/
LA  - ru
ID  - ZNSL_2024_536_a6
ER  - 
%0 Journal Article
%A D. V. Bystrov
%A A. I. Nazarov
%T The Robin problem for quasilinear equations with critical growth of the right-hand side
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 126-139
%V 536
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/
%G ru
%F ZNSL_2024_536_a6
D. V. Bystrov; A. I. Nazarov. The Robin problem for quasilinear equations with critical growth of the right-hand side. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 126-139. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a6/

[1] Adimurthi, G. Mancini, “The Neumann problem for elliptic equations with critical nonlinearity”, Nonlinear Analysis, Sc. Norm. Super. di Pisa Quaderni, 1991, 9–25 | MR | Zbl

[2] T. Aubin, “Problémes isopérimétriques et espaces de Sobolev”, J. Diff. Geom., 11 (1976), 573–598 | MR | Zbl

[3] H. Brezis, L. Nirenberg, “Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents”, Comm. Pure Appl. Math., 36 (1983), 437–477 | DOI | MR | Zbl

[4] A. V. Demyanov, A. I. Nazarov, “O suschestvovanii ekstremalnoi funktsii v teoremakh vlozheniya Soboleva s predelnym pokazatelem”, Algebra i Analiz, 17:5 (2005), 105–140

[5] B. Gidas, W.-M. Ni, L. Nirenberg, “Symmetry and Related Properties via the Maximum Principle”, Comm. Math. Phys., 68 (1979), 209–243 | DOI | MR | Zbl

[6] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, v. 5, Nauka, M., 1971 | MR

[7] P.-L. Lions, “The concentration-compactness principle in the Calculus of Variations. The limit case”, Rev. Mat. Iberoam., 1 (1985), 45–121 ; 145–201 | DOI | MR | Zbl | Zbl

[8] P.-L. Lions, F. Pacella, M. Tricarico, “Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions”, Indiana Univ. Math. J., 37:2 (1988), 301–324 | DOI | MR | Zbl

[9] A. I. Nazarov, “Dirichlet and Neumann problems to critical Emden-Fowler type equations”, J. Global Optim., 40 (2008), 289–303 | DOI | MR | Zbl

[10] A. I. Nazarov, A. B. Reznikov, “Attainability of infima in the critical Sobolev trace embedding theorem on manifolds”, AMS Transl. Series 2, 229 (2010), 197–210 | MR | Zbl

[11] A. I. Nazarov, A. P. Scheglova, “O nekotorykh svoistvakh ekstremali v variatsionnoi zadache, porozhdennoi teoremoi vlozheniya Soboleva”, Nelin. zadachi i teoriya funktsii, PMA, 27, T. Rozhkovskaya, Novosib., 2004, 109–136

[12] S. I. Pokhozhaev, “O sobstvennykh funktsiyakh uravneniya $\Delta u + \lambda f(u) = 0$”, Dokl. AN SSSR, 165:1 (1965), 36–39 | Zbl

[13] G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura Appl., 110 (1976), 353–372 | DOI | MR | Zbl

[14] P. Tolksdorf, “On the Dirichlet problem for Quasilinear Equations in Domains with Conical Boundary Points”, Comm. PDE, 8:7 (1983), 773–817 | DOI | MR | Zbl

[15] N. S. Trudinger, “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. Pure Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl

[16] X. J. Wang, “Neumann problems of semilinear elliptic equations involving critical Sobolev exponents”, J. Diff. Eqs, 93:2 (1991), 283–310 | DOI | MR | Zbl