Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 96-125

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u$ be either a second eigenfunction of the fractional $p$-Laplacian or a least energy nodal solution of the equation $(-\Delta)^s_p u = f(u)$ with superhomogeneous and subcritical nonlinearity $f$, in a bounded open set $\Omega$ and under the nonlocal zero Dirichlet conditions. Assuming only that $\Omega$ is Steiner symmetric, we show that the supports of positive and negative parts of $u$ touch $\partial\Omega$. As a consequence, the nodal set of $u$ has the same property whenever $\Omega$ is connected. The proof is based on the analysis of equality cases in certain polarization inequalities involving positive and negative parts of $u$, and on alternative characterizations of second eigenfunctions and least energy nodal solutions.
@article{ZNSL_2024_536_a5,
     author = {V. Bobkov and S. Kolonitskii},
     title = {Payne nodal set conjecture for the fractional $p${-Laplacian} in {Steiner} symmetric domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {96--125},
     publisher = {mathdoc},
     volume = {536},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a5/}
}
TY  - JOUR
AU  - V. Bobkov
AU  - S. Kolonitskii
TI  - Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 96
EP  - 125
VL  - 536
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a5/
LA  - en
ID  - ZNSL_2024_536_a5
ER  - 
%0 Journal Article
%A V. Bobkov
%A S. Kolonitskii
%T Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 96-125
%V 536
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a5/
%G en
%F ZNSL_2024_536_a5
V. Bobkov; S. Kolonitskii. Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 96-125. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a5/