@article{ZNSL_2024_536_a5,
author = {V. Bobkov and S. Kolonitskii},
title = {Payne nodal set conjecture for the fractional $p${-Laplacian} in {Steiner} symmetric domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {96--125},
year = {2024},
volume = {536},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a5/}
}
TY - JOUR AU - V. Bobkov AU - S. Kolonitskii TI - Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 96 EP - 125 VL - 536 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a5/ LA - en ID - ZNSL_2024_536_a5 ER -
V. Bobkov; S. Kolonitskii. Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 96-125. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a5/
[1] A. Aftalion, F. Pacella, “Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains”, Comptes Rendus Mathematique, 339:5 (2004), 339–344 | DOI | MR | Zbl
[2] T. V. Anoop,, P. Drábek, S. Sasi, “On the structure of the second eigenfunctions of the $p$-Laplacian on a ball”, Proc. Amer. Math. Soc., 144:6 (2016), 2503–2512 | DOI | MR | Zbl
[3] A. Baernstein II, D. Drasin, R. Laugesen, Symmetrization in Analysis, Cambridge University Press, 2019 | MR | Zbl
[4] R. Bañuelos, T. Kulczycki, “The Cauchy process and the Steklov problem”, J. Funct. Analysis, 211:2 (2004), 355–423 | DOI | MR
[5] T. Bartsch, T. Weth, M. Willem, “Partial symmetry of least energy nodal solutions to some variational problems”, J. d'Analyse Mathématique, 96:1 (2005), 1–18 | DOI | MR | Zbl
[6] W. Beckner, “Sobolev inequalities, the Poisson semigroup, and analysis on the sphere $S^n$”, Proc. National Acad. Sci., 89:11 (1992), 4816–4819 | DOI | MR | Zbl
[7] J. Benedikt, V. Bobkov, R. Dhara, P. Girg, “Nonradiality of second eigenfunctions of the fractional Laplacian in a ball”, Proc. Amer. Math. Soc., 150:12 (2022), 5335–5348 | MR | Zbl
[8] J. Benedikt, P. Drábek, P. Girg, “The second eigenfunction of the $p$-Laplacian on the disk is not radial”, Nonlinear Analysis: Theory, Methods Applications, 75:12 (2012), 4422–4435 | DOI | MR | Zbl
[9] V. Bobkov, S. Kolonitskii, “On a property of the nodal set of least energy sign-changing solutions for quasilinear elliptic equations”, Proc. Royal Soc. Edinburgh Section A: Mathematics, 149:5 (2019), 1163–1173 | DOI | MR | Zbl
[10] V. Bobkov, S. Kolonitskii, “On qualitative properties of solutions for elliptic problems with the $p$-Laplacian through domain perturbations”, Commun. Partial Diff. Equations, 45:3 (2020), 230–252 | DOI | MR | Zbl
[11] D. Bonheure, E. Moreira dos Santos, E. Parini, H. Tavares, T. Weth, “Nodal solutions for sublinear-type problems with Dirichlet boundary conditions”, International Mathematics Research Notices, 2022:5 (2022), 3760–3804 | DOI | MR | Zbl
[12] G. Bourdaud, Y. Meyer, “Fonctions qui opèrent sur les espaces de Sobolev”, J. Funct. Anal., 97:2 (1991), 351–360 | DOI | MR | Zbl
[13] L. Brasco, E. Lindgren, E. Parini, “The fractional Cheeger problem”, Interfaces and Free Boundaries, 16:3 (2014), 419–458 | DOI | MR | Zbl
[14] L. Brasco, E. Parini, “The second eigenvalue of the fractional $p$-Laplacian”, Adv. Calculus of Variations, 9:4 (2016), 323–355 | DOI | MR | Zbl
[15] F. Brock, A. Solynin, “An approach to symmetrization via polarization”, Trans. Amer. Math. Soc., 352:4 (2000), 1759–1796 | DOI | MR | Zbl
[16] A. Castro, J. Cossio, J. M. Neuberger, “A sign-changing solution for a superlinear Dirichlet problem”, The Rocky Mountain J. Math., 27:4 (1997), 1041–1053 | DOI | MR | Zbl
[17] X. Chang, Z. Nie, Z. Q. Wang, “Sign-changing solutions of fractional $p$-Laplacian problems”, Adv. Nonlinear Studies, 19:1 (2019), 29–53 | DOI | MR | Zbl
[18] A. M. Chorwadwala, M. Ghosh, “Optimal shapes for the first Dirichlet eigenvalue of the $p$-Laplacian and dihedral symmetry”, J. Math. Anal. Appl., 508:2 (2022), 125901 | DOI | MR | Zbl
[19] M. Cuesta, “Minimax theorems on $C^1$ manifolds via Ekeland variational principle”, Abstract and Applied Analysis, 2003:13 (2003), 757–768 | DOI | MR | Zbl
[20] L. Damascelli, “On the nodal set of the second eigenfunction of the Laplacian in symmetric domains in $\mathbb{R}^{N}$”, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, 11:3 (2000), 175–181 | MR | Zbl
[21] A. DelaTorre, E. Parini, Uniqueness of least energy solutions of the fractional Lane-Emden equation in the ball, 2023, arXiv: 2310.02228
[22] A. Dieb, I. Ianni, A. Saldana, “Uniqueness and nondegeneracy for Dirichlet fractional problems in bounded domains via asymptotic methods”, Nonlinear Analysis, 236 (2023), 113354 | DOI | MR | Zbl
[23] S. M. Djitte, S. Jarohs, “Nonradiality of second fractional eigenfunctions of thin annuli”, Commun. Pure Appl. Anal., 22:2 (2023), 613–638 | DOI | MR | Zbl
[24] P. Drábek, S. B. Robinson, “Resonance problems for the $p$-Laplacian”, J. Func. Analysis, 169:1 (1999), 189–200 | DOI | MR | Zbl
[25] B. Dyda, A. Kuznetsov, M. Kwaśnicki, “Eigenvalues of the fractional Laplace operator in the unit ball”, J. London Math. Soc., 95:2 (2017), 500–518 | DOI | MR | Zbl
[26] M. M. Fall, P. A. Feulefack, R. Y. Temgoua, T. Weth, “Morse index versus radial symmetry for fractional Dirichlet problems”, Adv. Math., 384 (2021), 107728 | DOI | MR | Zbl
[27] R. A. Ferreira, “Anti-symmetry of the second eigenfunction of the fractional Laplace operator in a 3-D ball”, Nonlinear Differential Equations and Applications NoDEA, 26:6 (2019) | MR
[28] A. Fiscella, R. Servadei, E. Valdinoci, “Density properties for fractional Sobolev spaces”, Annales Fennici Mathematici, 40:1 (2015), 235–253 | MR | Zbl
[29] S. Fournais, “The nodal surface of the second eigenfunction of the Laplacian in $\mathbb{R}^D$ can be closed”, J. Diff. Equations, 173:1 (2001), 145–159 | DOI | MR | Zbl
[30] G. Franzina, G. Palatucci, “Fractional $p$-eigenvalues”, Rivista di Matematica della Universitá di Parma, 5:2 (2014), 373–386 | MR | Zbl
[31] P. Freitas, D. Krejčiřík, “Location of the nodal set for thin curved tubes”, Indiana University Math. J., 57:1 (2008), 343–375 | DOI | MR | Zbl
[32] Z. Gao, X. Tang, W. Zhang, “Least energy sign-changing solutions for nonlinear problems involving fractional Laplacian”, Electronic J. Diff. Equations, 2016:238 (2016), 1–10 | MR
[33] C. Grumiau, M. Squassina, C. Troestler, “Asymptotic symmetries for fractional operators”, Nonlinear Analysis: Real World Applications, 26 (2015), 351–371 | DOI | MR | Zbl
[34] C. Grumiau, C. Troestler, “Nodal line structure of least energy nodal solutions for Lane–Emden problems”, Comptes Rendus Mathematique, 347:1 (2009), 3–14 ; 767–771 | MR | Zbl
[35] G. Gu, Y. Yu, F. Zhao, “The least energy sign-changing solution for a nonlocal problem”, J. Math. Phys., 58:5 (2017), 051505 | DOI | MR | Zbl
[36] K. Ho, I. Sim, “Properties of eigenvalues and some regularities on fractional $p$-Laplacian with singular weights”, Nonlinear Analysis, 189 (2019), 111580 | DOI | MR | Zbl
[37] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, N. Nadirashvili, “The nodal line of the second eigenfunction of the Laplacian in $\mathbb{R}^2$ can be closed”, Duke Math. J., 90:3 (1997), 631–640 | DOI | MR | Zbl
[38] A. Iannizzotto, S. J. Mosconi, M. Squassina, “Global Hölder regularity for the fractional $p$-Laplacian”, Revista Matemática Iberoamericana, 32:4 (2016), 1353–1392 | DOI | MR | Zbl
[39] R. Kiwan, “On the nodal set of a second Dirichlet eigenfunction in a doubly connected domain”, Annales de la Faculté des sciences de Toulouse: Mathématiques, 27:4 (2018), 863–873 | MR | Zbl
[40] K. A. Kumar, N. Biswas, “Strict monotonicity of the first $q$-eigenvalue of the fractional $p$-Laplace operator over annuli”, J. Geom. Anal., 34:3 (2024), 1–21 | DOI | MR | Zbl
[41] T. Kuusi, G. Mingione, Y. Sire, “Nonlocal equations with measure data”, Commun. Math. Phys., 337 (2015), 1317–1368 | DOI | MR | Zbl
[42] E. Lindgren, P. Lindqvist, “Fractional eigenvalues”, Calculus of Variations and Partial Differential Equations, 49:1-2 (2014), 795–826 | DOI | MR | Zbl
[43] H. Luo, “Sign-changing solutions for non-local elliptic equations”, Electronic J. Diff. Equations, 2017:180 (2017), 1–15 | MR
[44] A. D. Melas, “On the nodal line of the second eigenfunction of the Laplacian in $\mathbb{R}^2$”, J. Diff. Geom., 35:1 (1992), 255–263 | MR | Zbl
[45] R. Musina, A. I. Nazarov, “A note on truncations in fractional Sobolev spaces”, Bull. Math. Sci., 9:01 (2019), 1950001 | DOI | MR | Zbl
[46] L. E. Payne, “On two conjectures in the fixed membrane eigenvalue problem”, Zeitschrift für angewandte Mathematik und Physik, 24:5 (1973), 721–729 | DOI | MR | Zbl
[47] X. Ros-Oton, J. Serra, “The Pohozaev identity for the fractional Laplacian”, Archive for Rational Mechanics and Analysis, 213 (2014), 587–628 | DOI | MR | Zbl
[48] R. Servadei, E. Valdinoci, “Variational methods for non-local operators of elliptic type”, Discrete Continuous Dynamical Systems-A, 33:5 (2013), 2105 | DOI | MR | Zbl
[49] K. Teng, K. Wang, R. Wang, “A sign-changing solution for nonlinear problems involving the fractional Laplacian”, Electronic J. Diff. Equations, 2015:109 (2015), 1–12 | MR | Zbl
[50] P. Wu, Y. Zhou, “Sign-changing solutions for the boundary value problem involving the fractional $p$-Laplacian”, Topological Methods in Nonlinear Analysis, 57:2 (2021), 597–619 | MR | Zbl