Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 96-125
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $u$ be either a second eigenfunction of the fractional $p$-Laplacian or a least energy nodal solution of the equation $(-\Delta)^s_p u = f(u)$ with superhomogeneous and subcritical nonlinearity $f$, in a bounded open set $\Omega$ and under the nonlocal zero Dirichlet conditions. Assuming only that $\Omega$ is Steiner symmetric, we show that the supports of positive and negative parts of $u$ touch $\partial\Omega$. As a consequence, the nodal set of $u$ has the same property whenever $\Omega$ is connected. The proof is based on the analysis of equality cases in certain polarization inequalities involving positive and negative parts of $u$, and on alternative characterizations of second eigenfunctions and least energy nodal solutions.
@article{ZNSL_2024_536_a5,
author = {V. Bobkov and S. Kolonitskii},
title = {Payne nodal set conjecture for the fractional $p${-Laplacian} in {Steiner} symmetric domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {96--125},
publisher = {mathdoc},
volume = {536},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a5/}
}
TY - JOUR AU - V. Bobkov AU - S. Kolonitskii TI - Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 96 EP - 125 VL - 536 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a5/ LA - en ID - ZNSL_2024_536_a5 ER -
V. Bobkov; S. Kolonitskii. Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 96-125. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a5/