@article{ZNSL_2024_536_a3,
author = {P. Barrios and S. Mayorga and E. Stepanov},
title = {On a discrete max-plus transportation problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--78},
year = {2024},
volume = {536},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a3/}
}
P. Barrios; S. Mayorga; E. Stepanov. On a discrete max-plus transportation problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 54-78. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a3/
[1] A. Basak and M. Rudelson, “Invertibility of sparse non-Hermitian matrices”, Adv. Math., 310 (2017), 426–483 | DOI | MR | Zbl
[2] B. Bollobás, Random Graphs, ed. 2, Cambridge University Press, 2010 | MR
[3] R. S. Garfinkel, K. C.Gilbert, “The bottleneck traveling salesman problem: algorithms and probabilistic analysis”, J. Assoc. Comput. Mach., 25:5 (1978), 435–448 | DOI | MR | Zbl
[4] P. C. Gilmore, R. E. Gomory, “Sequencing a one state-variable machine: A solvable case of the traveling salesman problem”, Operations Res., 12 (1964), 655–679 | DOI | MR | Zbl
[5] V. Kolokoltsov, V. P. Maslov, Idempotent analysis and its applications, Mathematics and Its Applications, Springer Netherlands, 1997 | MR
[6] C. Villani, Optimal transport: old and new, Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2008 | MR