Properties of the phase boundary in the parabolic problem with hysteresis
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 26-53
Voir la notice de l'article provenant de la source Math-Net.Ru
We study solutions of parabolic equations with a discontinuous hysteresis operator, described by a free interface boundary. It is established that for spatially transverse initial data from the space $W^{2-2/q}_q$ with $q > 3$, there exists a solution in the space $W^{2,1}_q$, where the interface boundary exhibits Holder continuity with an exponent of $1/2$. Furthermore for initial data from the space $W^2_\infty$, it is proven that the interface boundary satisfies the Lipschitz condition. It is shown that for non-transversal initial data, solutions with an interface boundary do not exist.
@article{ZNSL_2024_536_a2,
author = {D. E. Apushkinskaya and S. B. Tikhomirov and N. N. Uraltseva},
title = {Properties of the phase boundary in the parabolic problem with hysteresis},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {26--53},
publisher = {mathdoc},
volume = {536},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/}
}
TY - JOUR AU - D. E. Apushkinskaya AU - S. B. Tikhomirov AU - N. N. Uraltseva TI - Properties of the phase boundary in the parabolic problem with hysteresis JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 26 EP - 53 VL - 536 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/ LA - ru ID - ZNSL_2024_536_a2 ER -
%0 Journal Article %A D. E. Apushkinskaya %A S. B. Tikhomirov %A N. N. Uraltseva %T Properties of the phase boundary in the parabolic problem with hysteresis %J Zapiski Nauchnykh Seminarov POMI %D 2024 %P 26-53 %V 536 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/ %G ru %F ZNSL_2024_536_a2
D. E. Apushkinskaya; S. B. Tikhomirov; N. N. Uraltseva. Properties of the phase boundary in the parabolic problem with hysteresis. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 26-53. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/