@article{ZNSL_2024_536_a2,
author = {D. E. Apushkinskaya and S. B. Tikhomirov and N. N. Uraltseva},
title = {Properties of the phase boundary in the parabolic problem with hysteresis},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {26--53},
year = {2024},
volume = {536},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/}
}
TY - JOUR AU - D. E. Apushkinskaya AU - S. B. Tikhomirov AU - N. N. Uraltseva TI - Properties of the phase boundary in the parabolic problem with hysteresis JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 26 EP - 53 VL - 536 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/ LA - ru ID - ZNSL_2024_536_a2 ER -
D. E. Apushkinskaya; S. B. Tikhomirov; N. N. Uraltseva. Properties of the phase boundary in the parabolic problem with hysteresis. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 26-53. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/
[1] M. A. Krasnoselskii, A. V. Pokrovskii, Sistemy s gisterezisom, Nauka, M., 1983 | MR
[2] A. Visintin, Differential Models of Hysteresis, Springer-Verlag, Berlin–Heidelberg, 1994 | MR | Zbl
[3] M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, Berlin, 1996 | MR | Zbl
[4] F. C. Hoppensteadt, W. Jäger, “Pattern formation by bacteria”, Biological growth and spread, Lecture Notes in Biomath., 38, Springer, Berlin-New York, 1980, 68–81 | DOI | MR | Zbl
[5] F. C. Hoppensteadt, W. Jäger, C. Pöppe, “A hysteresis model for bacterial growth patterns”, Modelling of patterns in space and time (Heidelberg, 1983), Lecture Notes in Biomath., 55, Springer, Berlin-New York, 1984, 123–134 | DOI | MR
[6] D. E. Apushkinskaya, N. N. Uraltseva, “Free boundaries in problems with hysteresis”, Philos. Trans. Roy. Soc. A, 373:2050 (2015), 20140271, 10 pp. | DOI | MR | Zbl
[7] M. Curran, P. Gurevich, S. Tikhomirov, “Recent advance in reaction-diffusion equations with non-ideal relays”, Control of self-organizing nonlinear systems, Underst. Complex Syst., Springer, Cham, 2016, 211–234 | DOI | MR
[8] A. Visintin, “Evolution problems with hysteresis in the source term”, SIAM J. Math. Anal., 17:5 (1986), 1113–1138 | DOI | MR | Zbl
[9] H. W. Alt, “On the thermostat problem”, Control Cybernet., 14:1–3 (1985), 171–193 | MR
[10] J. Kopfová, “Nonlinear semigroup methods in problems with hysteresis”, Discrete Contin. Dyn. Syst., 2007, 580–589 | MR | Zbl
[11] A. Visintin, “Ten issues about hysteresis”, Acta Appl. Math., 132 (2014), 635–647 | DOI | MR | Zbl
[12] P. Gurevich, R. Shamin, S. Tikhomirov, “Reaction-diffusion equations with spatially distributed hysteresis”, SIAM J. Math. Anal., 45:3 (2013), 1328–1355 | DOI | MR | Zbl
[13] P. Gurevich, S. Tikhomirov, “Uniqueness of transverse solutions for reaction-diffusion equations with spatially distributed hysteresis”, Nonlinear Anal., 75:18 (2012), 6610–6619 | DOI | MR | Zbl
[14] D. E. Apushkinskaya, N. N. Uraltseva, “On regularity properties of solutions to the hysteresis-type problem”, Interfaces Free Bound., 17:1 (2015), 93–115 | DOI | MR | Zbl
[15] P. Gurevich, S. Tikhomirov, “Rattling in spatially discrete diffusion equations with hysteresis”, Multiscale Model. Simul., 15:3 (2017), 1176–1197 | DOI | MR
[16] P. Gurevich, S. Tikhomirov, “Spatially discrete reaction-diffusion equations with discontinuous hysteresis”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 35:4 (2018), 1041–1077 | MR | Zbl
[17] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[18] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Izd. 3-e, pererab., Nauka, M., 1984 | MR
[19] M.A. Shubin, Lektsii ob uravneniyakh matematicheskoi fiziki, Izd. 2e, isprav., MTsNMO, M., 2003
[20] N. V. Krylov, Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, 1985 | MR
[21] D. E. Apushkinskaya, A. I. Nazarov, “On the boundary point principle for divergence-type equations”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30:4 (2019), 677–699 | MR | Zbl
[22] A. I. Nazarov, “A centennial of the Zaremba-Hopf-Oleinik lemma”, SIAM J. Math. Anal., 44:1 (2012), 437–453 | DOI | MR | Zbl