Properties of the phase boundary in the parabolic problem with hysteresis
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 26-53

Voir la notice de l'article provenant de la source Math-Net.Ru

We study solutions of parabolic equations with a discontinuous hysteresis operator, described by a free interface boundary. It is established that for spatially transverse initial data from the space $W^{2-2/q}_q$ with $q > 3$, there exists a solution in the space $W^{2,1}_q$, where the interface boundary exhibits Holder continuity with an exponent of $1/2$. Furthermore for initial data from the space $W^2_\infty$, it is proven that the interface boundary satisfies the Lipschitz condition. It is shown that for non-transversal initial data, solutions with an interface boundary do not exist.
@article{ZNSL_2024_536_a2,
     author = {D. E. Apushkinskaya and S. B. Tikhomirov and N. N. Uraltseva},
     title = {Properties of the phase boundary in the parabolic problem with hysteresis},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--53},
     publisher = {mathdoc},
     volume = {536},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/}
}
TY  - JOUR
AU  - D. E. Apushkinskaya
AU  - S. B. Tikhomirov
AU  - N. N. Uraltseva
TI  - Properties of the phase boundary in the parabolic problem with hysteresis
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 26
EP  - 53
VL  - 536
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/
LA  - ru
ID  - ZNSL_2024_536_a2
ER  - 
%0 Journal Article
%A D. E. Apushkinskaya
%A S. B. Tikhomirov
%A N. N. Uraltseva
%T Properties of the phase boundary in the parabolic problem with hysteresis
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 26-53
%V 536
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/
%G ru
%F ZNSL_2024_536_a2
D. E. Apushkinskaya; S. B. Tikhomirov; N. N. Uraltseva. Properties of the phase boundary in the parabolic problem with hysteresis. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 26-53. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/