Properties of the phase boundary in the parabolic problem with hysteresis
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 26-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study solutions of parabolic equations with a discontinuous hysteresis operator, described by a free interface boundary. It is established that for spatially transverse initial data from the space $W^{2-2/q}_q$ with $q > 3$, there exists a solution in the space $W^{2,1}_q$, where the interface boundary exhibits Holder continuity with an exponent of $1/2$. Furthermore for initial data from the space $W^2_\infty$, it is proven that the interface boundary satisfies the Lipschitz condition. It is shown that for non-transversal initial data, solutions with an interface boundary do not exist.
@article{ZNSL_2024_536_a2,
     author = {D. E. Apushkinskaya and S. B. Tikhomirov and N. N. Uraltseva},
     title = {Properties of the phase boundary in the parabolic problem with hysteresis},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--53},
     year = {2024},
     volume = {536},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/}
}
TY  - JOUR
AU  - D. E. Apushkinskaya
AU  - S. B. Tikhomirov
AU  - N. N. Uraltseva
TI  - Properties of the phase boundary in the parabolic problem with hysteresis
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 26
EP  - 53
VL  - 536
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/
LA  - ru
ID  - ZNSL_2024_536_a2
ER  - 
%0 Journal Article
%A D. E. Apushkinskaya
%A S. B. Tikhomirov
%A N. N. Uraltseva
%T Properties of the phase boundary in the parabolic problem with hysteresis
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 26-53
%V 536
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/
%G ru
%F ZNSL_2024_536_a2
D. E. Apushkinskaya; S. B. Tikhomirov; N. N. Uraltseva. Properties of the phase boundary in the parabolic problem with hysteresis. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 26-53. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a2/

[1] M. A. Krasnoselskii, A. V. Pokrovskii, Sistemy s gisterezisom, Nauka, M., 1983 | MR

[2] A. Visintin, Differential Models of Hysteresis, Springer-Verlag, Berlin–Heidelberg, 1994 | MR | Zbl

[3] M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, Berlin, 1996 | MR | Zbl

[4] F. C. Hoppensteadt, W. Jäger, “Pattern formation by bacteria”, Biological growth and spread, Lecture Notes in Biomath., 38, Springer, Berlin-New York, 1980, 68–81 | DOI | MR | Zbl

[5] F. C. Hoppensteadt, W. Jäger, C. Pöppe, “A hysteresis model for bacterial growth patterns”, Modelling of patterns in space and time (Heidelberg, 1983), Lecture Notes in Biomath., 55, Springer, Berlin-New York, 1984, 123–134 | DOI | MR

[6] D. E. Apushkinskaya, N. N. Uraltseva, “Free boundaries in problems with hysteresis”, Philos. Trans. Roy. Soc. A, 373:2050 (2015), 20140271, 10 pp. | DOI | MR | Zbl

[7] M. Curran, P. Gurevich, S. Tikhomirov, “Recent advance in reaction-diffusion equations with non-ideal relays”, Control of self-organizing nonlinear systems, Underst. Complex Syst., Springer, Cham, 2016, 211–234 | DOI | MR

[8] A. Visintin, “Evolution problems with hysteresis in the source term”, SIAM J. Math. Anal., 17:5 (1986), 1113–1138 | DOI | MR | Zbl

[9] H. W. Alt, “On the thermostat problem”, Control Cybernet., 14:1–3 (1985), 171–193 | MR

[10] J. Kopfová, “Nonlinear semigroup methods in problems with hysteresis”, Discrete Contin. Dyn. Syst., 2007, 580–589 | MR | Zbl

[11] A. Visintin, “Ten issues about hysteresis”, Acta Appl. Math., 132 (2014), 635–647 | DOI | MR | Zbl

[12] P. Gurevich, R. Shamin, S. Tikhomirov, “Reaction-diffusion equations with spatially distributed hysteresis”, SIAM J. Math. Anal., 45:3 (2013), 1328–1355 | DOI | MR | Zbl

[13] P. Gurevich, S. Tikhomirov, “Uniqueness of transverse solutions for reaction-diffusion equations with spatially distributed hysteresis”, Nonlinear Anal., 75:18 (2012), 6610–6619 | DOI | MR | Zbl

[14] D. E. Apushkinskaya, N. N. Uraltseva, “On regularity properties of solutions to the hysteresis-type problem”, Interfaces Free Bound., 17:1 (2015), 93–115 | DOI | MR | Zbl

[15] P. Gurevich, S. Tikhomirov, “Rattling in spatially discrete diffusion equations with hysteresis”, Multiscale Model. Simul., 15:3 (2017), 1176–1197 | DOI | MR

[16] P. Gurevich, S. Tikhomirov, “Spatially discrete reaction-diffusion equations with discontinuous hysteresis”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 35:4 (2018), 1041–1077 | MR | Zbl

[17] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[18] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Izd. 3-e, pererab., Nauka, M., 1984 | MR

[19] M.A. Shubin, Lektsii ob uravneniyakh matematicheskoi fiziki, Izd. 2e, isprav., MTsNMO, M., 2003

[20] N. V. Krylov, Nelineinye ellipticheskie i parabolicheskie uravneniya vtorogo poryadka, Nauka, 1985 | MR

[21] D. E. Apushkinskaya, A. I. Nazarov, “On the boundary point principle for divergence-type equations”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30:4 (2019), 677–699 | MR | Zbl

[22] A. I. Nazarov, “A centennial of the Zaremba-Hopf-Oleinik lemma”, SIAM J. Math. Anal., 44:1 (2012), 437–453 | DOI | MR | Zbl