Initial-boundary value problems for the three-dimensional Zakharov-Kuznetsov equation
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 336-378 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Faminskii A. V. Initial-boundary value problems for the three-dimensional Zakharov–Kuznetsov equation. Initial-boundary value problems are considered for the Zakharov–Kuznetsov equation $u_t + b u_x + \Delta u_x + uu_x = f$ in the case of three spatial variables $(x,y,z)$ posed on a domain $\mathbb R_+ \times\Omega$, where $\Omega$ — is a bounded domain with respect to $(y,z)$ with sufficiently smooth boundary. For $t>0$ on the left boundary $x=0$ the non-homogeneous Dirichlet boundary condition is set, while on $\partial\Omega$ — homogeneous either Dirichlet or Neumann condition. Results on existence of global in time weak and strong solutions, as well as on uniqueness of strong solutions are established. An initial function is assumed to belong to weighted (at $+\infty$) spaces $L_2$ in the case of weak solutions and $H^1$ in the case of strong solutions. Both power and exponential weights are allowed. In the case of Dirichlet boundary condition large-time decay of small solutions is also obtained.
@article{ZNSL_2024_536_a14,
     author = {A. V. Faminskii},
     title = {Initial-boundary value problems for the three-dimensional {Zakharov-Kuznetsov} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {336--378},
     year = {2024},
     volume = {536},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a14/}
}
TY  - JOUR
AU  - A. V. Faminskii
TI  - Initial-boundary value problems for the three-dimensional Zakharov-Kuznetsov equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 336
EP  - 378
VL  - 536
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a14/
LA  - ru
ID  - ZNSL_2024_536_a14
ER  - 
%0 Journal Article
%A A. V. Faminskii
%T Initial-boundary value problems for the three-dimensional Zakharov-Kuznetsov equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 336-378
%V 536
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a14/
%G ru
%F ZNSL_2024_536_a14
A. V. Faminskii. Initial-boundary value problems for the three-dimensional Zakharov-Kuznetsov equation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 336-378. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a14/

[1] V. E. Zakharov, E. A. Kuznetsov, “O trekhmernykh solitonakh”, Zhurn. eksper. teoret. fiz., 66:2 (1974), 594–597

[2] D. Han-Kwan, “From Vlasov–Poisson to Korteweg–de Vries and Zakharov–Kuznetsov”, Comm. Math. Phys., 324:3 (2013), 961–993 | DOI | MR | Zbl

[3] D. Lannes, F. Linares, J.-C. Saut, “The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov–Kuznetsov equation”, Progress Nonlinear Differential Equ. Appl., 84 (2013), 183–215 | MR

[4] F. Linares, J.-C. Saut, “The Cauchy problem for the 3D Zakharov–Kuznetsov equation”, Discrete Contin. Dyn. Syst., Ser. A, 24:2 (2009), 547–565 | DOI | MR | Zbl

[5] F. Ribaud, S. Vento, “Well-posedness results for the 3D Zakharov–Kuznetsov equation”, SIAM J. Math. Anal., 44:4 (2012), 2289–2304 | DOI | MR | Zbl

[6] A. Grünrock, “Remark on the modified Zakharov–Kuznetsov equation in three space dimensions”, Math. Res. Lett., 21:1 (2014), 127–131 | DOI | MR | Zbl

[7] L. Molinet, D. Pilod, “Bilinear Strichartz estimates for the Zakharov–Kuznetsov equation and applications”, Ann. Inst. H. Poincaré (C) Analyse Non Linéaire, 32:2 (2015), 347–371 | DOI | MR | Zbl

[8] A. V. Faminskii, “An initial-boundary value problem for three-dimensional Zakharov–Kuznetsov equation”, J. Differential Equ., 46:3 (2016), 3029–3055 | DOI | MR

[9] T. Kato, “Well-posedness for the generalized Zakharov–Kuznetsov equation in modulation spaces”, J. Fourier Anal. Appl., 23:3 (2017), 612–655 | DOI | MR | Zbl

[10] F. Linares, G. Ponce, “On special regularity properties of solutions of the Zakharov–Kuznetsov equation”, Comm. Pure Appl. Anal., 17:4 (2018), 1561–1572 | DOI | MR | Zbl

[11] F. Linares, J.P. Ramos, “The Cauchy problem for the $L^2$-critical generalized Zakharov–Kuznetsov equation”, Comm. Partial Differential Equ., 46:9 (2021), 1601–1627 | DOI | MR | Zbl

[12] S. Herr, S. Kinoshita, “Subcritical well-posedness results for the Zakharov–Kuznetsov equation in dimensions three and higher”, Annales de'l Institut Fourier, 73:3 (2023), 1203–1267 | DOI | MR | Zbl

[13] A. V. Faminskii, “On the mixed problem for quasilinear equations of the third order”, J. Math. Sci., 110 (2002), 2476–2507 | DOI | MR | Zbl

[14] A. V. Faminskii, I. Yu. Bashlykova, “Weak solution to one initial-boundary value problem with three boundary conditions for quasilinear equations of the third order”, Ukrainian Math. Bull., 5 (2008), 83–98 | MR

[15] J.-C. Saut, R. Temam, “An initial boundary-value problem for the Zakharov–Kuznetsov equation”, Adv. Differential Equ., 15 (2010), 1001–1031 | MR | Zbl

[16] A.V. Faminskii, “Weak solutions to initial-boundary-value problems for quasilinear evolution equations of an odd order”, Adv. Differential Equ., 17 (2012), 421–470 | MR | Zbl

[17] N. A. Larkin, M. V. Padilha, “Global regular solutions to one problem of Saut–Temam for the 3D Zakharov–Kuznetsov equation”, Appl. Math. Optim., 77:2 (2018), 253–274 | DOI | MR | Zbl

[18] J.-C. Saut, R. Temam, C. Wang, “An initial and boundary-value problem for the Zakharov–Kuznetsov equation in a bounded domain”, J. Math. Phys., 53 (2012), 115612 | DOI | MR | Zbl

[19] C. Wang, “Local existence of strong solutions to the 3D Zakharov–Kuznetsov equation in a bounded domain”, Appl. Math. Optim., 69:1 (2014), 1–19 | DOI | MR | Zbl

[20] N. A. Larkin, “Global regular solutions for the 3D Zakharov–Kuznetsov equation posed on a bounded domain”, Differential Integral Equ., 29:7–8 (2016), 775–790 | MR | Zbl

[21] N. A. Larkin, “Global regular solutions for the 3D Zakharov–Kuznetsov equation posed on unbounded domains”, J. Math. Phys., 56:9 (2015), 091508 | DOI | MR | Zbl

[22] A.V. Faminskii, “Initial-boundary value problems in a half-strip for two-dimensional Zakharov–Kuznetsov equation”, Ann. Inst. H. Poincaré (C) Analyse Non Linéaire, 35:5 (2018), 1235–1265 | DOI | MR | Zbl

[23] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983

[24] C. E. Kenig, G. Ponce, L. Vega, “Oscillatory integrals and regularity of dispersive equations”, Indiana Univ. Math. J., 40:1 (1991), 33–69 | DOI | MR | Zbl

[25] A. V. Faminskii, “Initial-boundary value problems on a half-strip for the generalized Kawahara–Zakharov–Kuznetsov equation”, Z. Angew. Math. Phys., 73 (2022), 93 | DOI | MR | Zbl

[26] O.V. Besov, V.P. Ilin, S.M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[27] J. L. Bona, S. Sun, B.-Y. Zhang, “The initial-boundary-value problem for the KdV equation on a quarter plane”, Trans. Amer. Math. Soc., 354 (2001), 427–490 | DOI | MR