On attractors of MHD boundary layer of liquid with Ladyzhenskaya rheological law. Inuence of magnetic field on velocity asymptotics
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 286-335
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper it considers the boundary layer of a rheologically complex magnetohydrodynamic medium obeying the law of O. A. Ladyzhenskaya. Using the Crocco change of variables, the original problem is reduced to a problem for one nonlinear equation, for which the theorem of existence and uniqueness of the solution is proved. After that, the validity of similar theorems for the original problem is shown. Then, asymptotics of solutions of the original problem in the neighborhood of the initial point are constructed.
@article{ZNSL_2024_536_a13,
author = {V. N. Samokhin and G. A. Chechkin},
title = {On attractors of {MHD} boundary layer of liquid with {Ladyzhenskaya} rheological law. {Inuence} of magnetic field on velocity asymptotics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {286--335},
publisher = {mathdoc},
volume = {536},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a13/}
}
TY - JOUR AU - V. N. Samokhin AU - G. A. Chechkin TI - On attractors of MHD boundary layer of liquid with Ladyzhenskaya rheological law. Inuence of magnetic field on velocity asymptotics JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 286 EP - 335 VL - 536 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a13/ LA - ru ID - ZNSL_2024_536_a13 ER -
%0 Journal Article %A V. N. Samokhin %A G. A. Chechkin %T On attractors of MHD boundary layer of liquid with Ladyzhenskaya rheological law. Inuence of magnetic field on velocity asymptotics %J Zapiski Nauchnykh Seminarov POMI %D 2024 %P 286-335 %V 536 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a13/ %G ru %F ZNSL_2024_536_a13
V. N. Samokhin; G. A. Chechkin. On attractors of MHD boundary layer of liquid with Ladyzhenskaya rheological law. Inuence of magnetic field on velocity asymptotics. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 286-335. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a13/