On attractors of MHD boundary layer of liquid with Ladyzhenskaya rheological law. Inuence of magnetic field on velocity asymptotics
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 286-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper it considers the boundary layer of a rheologically complex magnetohydrodynamic medium obeying the law of O. A. Ladyzhenskaya. Using the Crocco change of variables, the original problem is reduced to a problem for one nonlinear equation, for which the theorem of existence and uniqueness of the solution is proved. After that, the validity of similar theorems for the original problem is shown. Then, asymptotics of solutions of the original problem in the neighborhood of the initial point are constructed.
@article{ZNSL_2024_536_a13,
     author = {V. N. Samokhin and G. A. Chechkin},
     title = {On attractors of {MHD} boundary layer of liquid with {Ladyzhenskaya} rheological law. {Inuence} of magnetic field on velocity asymptotics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {286--335},
     year = {2024},
     volume = {536},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a13/}
}
TY  - JOUR
AU  - V. N. Samokhin
AU  - G. A. Chechkin
TI  - On attractors of MHD boundary layer of liquid with Ladyzhenskaya rheological law. Inuence of magnetic field on velocity asymptotics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 286
EP  - 335
VL  - 536
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a13/
LA  - ru
ID  - ZNSL_2024_536_a13
ER  - 
%0 Journal Article
%A V. N. Samokhin
%A G. A. Chechkin
%T On attractors of MHD boundary layer of liquid with Ladyzhenskaya rheological law. Inuence of magnetic field on velocity asymptotics
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 286-335
%V 536
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a13/
%G ru
%F ZNSL_2024_536_a13
V. N. Samokhin; G. A. Chechkin. On attractors of MHD boundary layer of liquid with Ladyzhenskaya rheological law. Inuence of magnetic field on velocity asymptotics. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 286-335. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a13/

[1] L. Prandtl, “Über Flüssigkeitsbewegungen bei sehr kleiner Reibund”, Verh. Int. Math. Kongr. Heidelberg, Teubner, 1904, 484–494

[2] O. A. Oleinik, “O sisteme uravnenii teorii pogranichnogo sloya”, ZhVM i MF, 3 (1963), 489–507 | Zbl

[3] O. A. Oleinik, “K matematicheskoi teorii pogranichnogo sloya dlya nestatsionarnogo techeniya neszhimaemoi zhidkosti”, PMM, 30:5 (1966), 801–821 | Zbl

[4] O. A. Oleinik, V. N. Samokhin, Matematicheskie metody v teorii pogranichnogo sloya, Nauka, Fizmatlit, M., 1997, 512 pp.

[5] G. Bayada, M. Chambat, “Homogenezation of the Stokes system in a thin film with rapidly varying thickness”, Model. Math. et Anal. Number. ($M^2AN$), 23:2 (1989), 205–234 | DOI | MR | Zbl

[6] Y. Amirat, G. A. Chechkin, M. S. Romanov, “On Multiscale Homogenization Problems in Boundary Layer Theory”, Zeitschrift für angewandte Mathematik und Physik, 63:3 (2012), 475–502 | DOI | MR | Zbl

[7] A. Yu. Linkevich, S. V. Spiridonov, G. A. Chechkin, “O pogranichnom sloe nyutonovskoi zhidkosti, obtekayuschei sherokhovatuyu poverkhnost i prokhodyaschei cherez perforirovannuyu pregradu”, Ufimskii matematicheskii zhurnal, 3:3 (2011), 93–104

[8] T. S. Ratyu, M. S. Romanov, G. A. Chechkin, “Usrednenie uravnenii dinamiki nematicheskikh zhidkikh kristallov s neodnorodnoi plotnostyu”, Problemy matematicheskogo analiza, 66 (2012), 167–173 | Zbl

[9] A. Yu. Linkevich, S. V. Spiridonov, G. A. Chechkin, “Usrednenie stratifitsirovannoi dilatantnoi zhidkosti”, Sovremennaya matematika. Fundamentalnye napravleniya, 48 (2013), 75–83

[10] A. Yu. Linkevich, T. S. Ratyu, S. V. Spiridonov, G. A. Chechkin, “O tonkom sloe nenyutonovskoi zhidkosti na sherokhovatoi poverkhnosti, protekayuschei cherez perforirovannuyu pregradu”, Problemy matematicheskogo analiza, 68 (2013), 173–182

[11] G. A. Chechkin, T. P. Chechkina, “Ploskii skalyarnyi analog lineinoi vyrozhdayuscheisya gidrodinamicheskoi zadachi s neperiodicheskoi mikrostrukturoi na svobodnoi poverkhnosti”, Problemy matematicheskogo analiza, 78 (2015), 201–213 | Zbl

[12] T. P. Chechkina, “Skalyarnaya gidrodinamicheskaya zadacha s neperiodicheski raspolozhennymi kontsentrirovannymi massami na poverkhnosti”, Vestnik Natsionalnogo issledovatelskogo yadernogo universiteta “MIFI”, 4:1 (2015), 25–34

[13] G. A. Chechkin, T. P. Chechkina, T. S. Ratiu, M. S. Romanov, “Nematodynamics and Random Homogenization”, Applicable Analysis, 95:10 (2016), 2243–2253 | DOI | MR | Zbl

[14] O. A. Ladyzhenskaya, “O modifikatsiyakh uravnenii Nave–Stoksa dlya bolshikh gradientov skorostei”, Tr. MIAN SSSR, 102, 1967, 85–104 | Zbl

[15] V. N. Samokhin, G. M. Fadeeva, G. A. Chechkin, “Modifikatsiya O.A. Ladyzhenskoi uravnenii Nave–Stoksa i teoriya pogranichnogo sloya”, Vestnik MGUP im. Ivana Fedorova, 5 (2009), 127–143

[16] V. N. Samokhin, G. M. Fadeeva, G. A. Chechkin, “Attraktory sistemy uravnenii pogranichnogo sloya obobschenno nyutonovskoi sredy”, Vestnik MGUP im. Ivana Fedorova, 1 (2011), 245–249

[17] V. N. Samokhin, G. M. Fadeeva, G. A. Chechkin, “Uravneniya pogranichnogo sloya dlya modifitsirovannoi sistemy Nave–Stoksa”, Trudy seminara im. I.G.Petrovskogo, 28, Izd-vo Mosk. un-ta, M., 2011, 329–361 | Zbl

[18] R. R. Bulatova, G. A. Chechkin, T. P. Chechkina, V. N. Samokhin, “On the influence of a magnetic field on the separation of the boundary layer of a non–Newtonian MHD medium”, C R Mécanique, 346:9 (2018), 807–814 | DOI | MR

[19] Z. P. Shulman, B. M. Berkovskii, Pogranichnyi sloi nenyutonovskikh zhidkostei, Nauka i tekhnika, Minsk, 1966

[20] Ya. G. Sapunkov, “Avtomodelnye resheniya pogranichnogo sloya nenyutonovskoi zhidkosti v magnitnoi gidrodinamike”, Izv. AN SSSR. MZhG, 1967, no. 6, 77–82

[21] V. N. Samokhin, Matematicheskie voprosy magnitnoi gidrodinamiki nenyutonovskikh sred, Izd-vo MGUP, M., 2004

[22] R. R. Bulatova, “O povedenii reshenii sistemy Prandtlya dlya vyazkoi MGD-sredy O. A. Ladyzhenskoi pri obtekanii konfuzora”, Doklady RAN, 503:2 (2022), 33–39 | Zbl

[23] R. R. Bulatova, V. N. Samokhin, G. A. Chechkin, “Uravneniya MGD-pogranichnogo sloya dlya vyazkoi neszhimaemoi sredy v modifikatsii O. A. Ladyzhenskoi. Suschestvovanie i edinstvennost reshenii, vliyanie magnitnogo polya na yavlenie otryva pogranichnogo sloya”, Problemy matematicheskogo analiza, 92 (2018), 83–100 | Zbl

[24] R. R. Bulatova, V. N. Samokhin, G. A. Chechkin, “Sistema uravnenii pogranichnogo sloya reologicheski slozhnoi sredy. Peremennye Krokko”, Doklady RAN, 487 (2019), 119–125 | Zbl

[25] O. A. Oleinik, E. V. Radkevich, Uravneniya s neotritsatelnoi kharakteristicheskoi formoi, Izd-vo MGU, M., 2010

[26] O. A. Oleinik, “Lineinye uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Mat. sb., 69:111 (1966), 111–140 | Zbl

[27] Zh. Lere, Yu. Shauder, “Topologiya i funktsionalnye uravneniya”, UMN, 1:3,4 (1946), 71–95 | Zbl

[28] Ph. Hartman, “On the existence of similar solutions of some boundary layer problems”, SIAM J. Math. Anal., 3:1 (1972), 120–147 | DOI | MR | Zbl