A posteriori error identities for the evolutionary Stokes problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 261-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is concerned with functional identities that control distances between the exact solution of the evolutionary Stokes problem and a function from the corresponding energy space. Left hand sides of the identities contain norms of errors associated with velocity and stress fields error and the right hand ones contain known data and integrals that can be either directly computed or estimated via known quantities. It is shown that identities yield guaranteed and fully computable bounds of errors. A posteriori error identities and estimates are derived in the most general form. They do not use Galerkin orthogonality, divergence free property, or other special features of functions compared with the exact solution. Therefore, they are applicable for a wide variety of approximations, regardless of the method by which they were obtained.
@article{ZNSL_2024_536_a12,
     author = {S. Repin},
     title = {A posteriori error identities for the evolutionary {Stokes} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {261--285},
     year = {2024},
     volume = {536},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a12/}
}
TY  - JOUR
AU  - S. Repin
TI  - A posteriori error identities for the evolutionary Stokes problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 261
EP  - 285
VL  - 536
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a12/
LA  - en
ID  - ZNSL_2024_536_a12
ER  - 
%0 Journal Article
%A S. Repin
%T A posteriori error identities for the evolutionary Stokes problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 261-285
%V 536
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a12/
%G en
%F ZNSL_2024_536_a12
S. Repin. A posteriori error identities for the evolutionary Stokes problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 261-285. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a12/

[1] C. Bernardi, R. Verfürth, “A posteriori error analysis of the fully discretized time-dependent Stokes equation”, M2AN Math. Model. Numer. Anal., 38 (2004), 437–455 | DOI | MR | Zbl

[2] M. Costabel, M. Crouzeix, M. Dauge, Y. Lafranche, “The inf-sup constant for the divergence on corner domains”, Num. Meth. for Partial Diff. Eq., 2014 | MR

[3] M. Dobrowolski, “On the LBB constant on stretched domains”, Math. Nachr., 254–255 (2003), 64–67 | DOI | MR | Zbl

[4] M. Feistauer, Mathematical methods in fluid dynamics, Longman, Harlow, 1993 | MR | Zbl

[5] V. Girault, P. N. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Springer, New York, 1986 | MR

[6] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984 | MR | Zbl

[7] M. Fuchs, S. Repin, “A posteriori error estimates of functional type for variational problems related to generalized Newtonian fluids”, Math. Methods Appl. Sci., 29:18 (2006), 2224–2225 | DOI | MR

[8] D. Kay, D. Silvester, “A-posteriori error estimation for stabilised mixed approximations of the Stokes equations”, SIAM J. Sci. Comput., 21 (2000), 1321–1336 | DOI | MR | Zbl

[9] G. Kobelkov, M. Olshanskii, “Effective preconditioning of Uzawa type schemes for a generalized Stokes problem”, Numer. Math., 86 (2000), 443–470 | DOI | MR | Zbl

[10] E. Deriaz, V. Perrier, “Orthogonal Helmholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets”, Appl. Comput. Harmon. Anal., 26 (2009), 249–269 | DOI | MR | Zbl

[11] M. Kessler, Die Ladyzhenskaya–Konstante in der numerischen Behandlung von Strömungsproblemen, Dissertation zur Erlangung des naturwissenschaftlichen. Doktorgrades der Bayerischen Julius-Maximilians Universität Würzburg, 2000

[12] S. G. Mikhlin, Variational Methods in Mathematical Physics, Pergamon Press, Oxford, 1964 | Zbl

[13] O. A. Ladyzhenskaya, Matematicheskie problemy dinamiki vyazkoi neszhimaemoi khidkosti, Nauka, M., 1970 | MR

[14] J. T. Oden, L. Demkowicz, T. Strouboulis, P. Devloo, “Adaptive methods for problems in solid and fluid mechanics”, Accuracy Estimates and Adaptive Refinements in Finite Element Computations (Lisbon, 1984), eds. I. Babuska, O. C. Zienkiewicz, J. Gago, E. R. de Oliveira, Wiley, Chichester, 1996, 249–280 | MR

[15] J. T. Oden, W. Wu, M. Ainsworth, “An a posteriori error estimate for finite element approximations of the Navier–Stokes equations”, Comput. Methods. Appl. Mech. Engrg., 111 (1994), 185–202 | DOI | MR | Zbl

[16] M. A. Olshanskii, E. V. Chizhonkov, “On the best constant in the $inf~sup$ condition for prolonged rectangular domains”, Mat. Zametki, 67:3 (2000), 387–396 | DOI | MR | Zbl

[17] C. Padra, “A posteriori error estimators for nonconforming approximation of some quasi-newtonian flows”, SIAM J. Numer. Anal., 34 (1997), 1600–1615 | DOI | MR | Zbl

[18] L. E. Payne, “A bound for the optimal constant in an inequality of Ladyzhenskaya and Solonnikov”, IMA J. Appl. Math., 72 (2007), 563–569 | DOI | MR | Zbl

[19] W. Prager, J. L. Synge, “Approximations in elasticity based on the concept of functions space”, Quart. Appl. Math., 5 (1947), 241–269 | DOI | MR | Zbl

[20] R. Rannacher, “Finite element methods for the incompressible Navier-Stokes equations”, Fundamental directions in mathematical fluid mechanics, eds. G. P. Galdi, J. H. Heywood, R. Rannacher, Birkhauser, Basel, 2000, 191–293 | DOI | MR | Zbl

[21] S. Repin, “A posteriori estimates for the Stokes problem”, Zap. Nauchn. Semin. POMI, 259, 1999, 195–211 | MR | Zbl

[22] S. Repin, “Estimates for deviations from exact solutions of some boundary value problems with the incompressibility condition”, Algebra i Analiz, 16:5 (2004), 124–161 | MR

[23] S. Repin, “On projections to subspaces of vector valued functions subject to conditions of the divergence free type”, Zap. Nauchn. Semin. POMI, 459, 2017, 83–103 | MR

[24] S. Repin, “Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13:2 (2002), 121–133 | MR | Zbl

[25] S. Repin, A Posteriori Estimates for Partial Differential Equations, Walter de Gruyter, Berlin, 2008 | MR

[26] S. Repin, “Error identities for parabolic initial boundary value problems”, Zap. Nauchn. Semin. POMI, 508, 2021, 147–172 | MR

[27] S. I. Repin, “Tozhdestvo dlya otklonenii ot tochnogo resheniya zadachi ${\Lambda}^*{\mathcal A} \Lambda u~+~\ell~=~0$ i ego sledstviya”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 1986–2009 | DOI | Zbl

[28] S. Repin, “Error identities for parabolic equations with monotone spatial operators”, Comput. Methods Appl. Math., 24:3 (2024), 777–795 | DOI | MR | Zbl

[29] S. Repin, “Estimates of the distance to the solution of an evolutionary problem obtained by linearization of the Navier-Stokes equation”, Zap. Nauchn. Semin. POMI, 489, 2020, 67–80 | MR

[30] S. Repin, “Identities for Measures of Deviation from Solutions to Parabolic-Hyperbolic Equations”, Computational Mathematics and Mathematical Physic, 64:5 (2024), 1044–1057 | DOI | MR | Zbl

[31] S. Repin, S. Sauter, Accuracy of Mathematical Models, Tracts in Mathematics, 33, European Mathematical Society, Berlin, 2020 | DOI | MR | Zbl

[32] R. Stevenson, “Divergence-free wavelet bases on the hypercube: free-slip boundary conditions, and applications for solving the instationary Stokes equations”, Math. Comput., 80:275 (2011), 1499–1523 | DOI | MR | Zbl

[33] G. Stoyan, “Towards discrete Velte decompositions and narrow bounds for Inf-Sup constants”, Comput. Math. Appl., 38 (1999), 243–261 | DOI | MR | Zbl

[34] R. Temam, Navier–Stokes equations, Studies in Mathematics and its Applications, 2, North-Holland, Amsterdam, 1979 | MR | Zbl