On the sufficient conditions for the S-shaped Buckley–Leverett function
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 247-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The flux function in the Buckley–Leverett equation, that is, the function characterizing the ratio of the relative mobility functions of the two phases, is considered. The common conjecture stating that any convex mobilities result in an S-shaped Buckley–Leverett function is analyzed and disproved by a counterexample. Additionally, sufficient conditions for the S-shaped Buckley–Leverett function are given. The class of functions satisfying those conditions is proven to be closed under multiplication. Some functions from known relative mobility models are confirmed to be in that class.
@article{ZNSL_2024_536_a11,
     author = {N. V. Rastegaev},
     title = {On the sufficient conditions for the {S-shaped} {Buckley{\textendash}Leverett} function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {247--260},
     year = {2024},
     volume = {536},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a11/}
}
TY  - JOUR
AU  - N. V. Rastegaev
TI  - On the sufficient conditions for the S-shaped Buckley–Leverett function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 247
EP  - 260
VL  - 536
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a11/
LA  - en
ID  - ZNSL_2024_536_a11
ER  - 
%0 Journal Article
%A N. V. Rastegaev
%T On the sufficient conditions for the S-shaped Buckley–Leverett function
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 247-260
%V 536
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a11/
%G en
%F ZNSL_2024_536_a11
N. V. Rastegaev. On the sufficient conditions for the S-shaped Buckley–Leverett function. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 247-260. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a11/

[1] D. Serre, Systems of Conservation Laws 1: Hyperbolicity, entropies, shock waves, Cambridge University Press, 1999 | MR

[2] S. E. Buckley, M. Leverett, “Mechanism of fluid displacement in sands”, Transactions of the AIME, 146:01 (1942), 107–116 | DOI

[3] Amer. Math. Soc. Trans., 26:2 (1963), 95–172 | MR | Zbl | Zbl

[4] Trans. Amer. Math. Soc., 29:2 (1963), 295–381 | MR | MR | Zbl

[5] T. Johansen, R. Winther, “The solution of the Riemann problem for a hyperbolic system of conservation laws modeling polymer flooding”, SIAM J. Math. Anal., 19:3 (1988), 541–566 | DOI | MR | Zbl

[6] F. Bakharev, A. Enin, Y. Petrova, N. Rastegaev, “Impact of dissipation ratio on vanishing viscosity solutions of the Riemann problem for chemical flooding model”, J. Hyperbolic Differ. Equ. Differential Equations, 20:2 (2023), 407–432 | DOI | MR | Zbl

[7] P. Castañeda,, F. Furtado, D. Marchesin, The convex permeability three-phase flow in reservoirs, IMPA Preprint Série E-2258, 2013, 34 pp.

[8] P. Castañeda, E. Abreu, F. Furtado, D. Marchesin, “On a universal structure for immiscible three-phase flow in virgin reservoirs”, Comput. Geosciences, 20 (2016), 171–185 | DOI | MR | Zbl

[9] J. Tang, P. Castañeda, D. Marchesin, W. R. Rossen, “Three-Phase Fractional-Flow Theory of Foam-Oil Displacement in Porous Media With Multiple Steady States”, Water Resources Research, 55:12 (2019), 10319–10339 | DOI

[10] H. Wahanik, A. A. Eftekhari, J. Bruining, D. Marchesin, K. H. Wolf, “Analytical solutions for mixed CO2-water injection in geothermal reservoirs”, Canadian Unconventional Resources and International Petroleum Conference (OnePetro, 2010)

[11] P. Castañeda, “Dogma: S-shaped”, The Mathematical Intelligencer, 38 (2016), 10–13 | DOI | MR | Zbl

[12] L.W. Lake, Enhanced oil recovery, Chapter 3, 1989

[13] A. T. Corey, “The interrelation between gas and oil relative permeabilities”, Producers Monthly, 19, November (1954), 38–41

[14] R. H. Brooks, A. T. Corey, “Hydraulic Properties of Porous Media”, Hydrology Papers, 3, Colorado State U., Fort Collins, Colorado, 1964

[15] D. Chen, Z. Pan, J. Liu, L. D. Connell, “An improved relative permeability model for coal reservoirs”, Intern. J. Coal Geology, 109 (2013), 45–57 | DOI

[16] G. L. Chierici, “Novel relations for drainage and imbibition relative permeabilities”, Soc. Petroleum Engineers J., 24:03 (1984), 275–276 | DOI