@article{ZNSL_2024_536_a10,
author = {V. G. Osmolovskii},
title = {A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {228--246},
year = {2024},
volume = {536},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a10/}
}
TY - JOUR AU - V. G. Osmolovskii TI - A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 228 EP - 246 VL - 536 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a10/ LA - ru ID - ZNSL_2024_536_a10 ER -
V. G. Osmolovskii. A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 228-246. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a10/
[1] M. A.Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990
[2] V. G. Osmolovskii, “Temperatury fazovykh perekhodov dlya variatsionnoi zadachi o ravnovesii dvukhfazovykh sred s ogranicheniyami”, Pobl. mat.anal., 114 (2022), 63–70 | Zbl
[3] V. G. Osmolovskii, “Fazovye perekhody dlya dvukhfazovykh sred s odinakovymi modulyami uprugosti”, Probl. mat. anal., 106 (2020), 139–147 | Zbl
[4] V. G. Osmolovskii, “Ob'emnaya dolya odnoi iz faz v sostoyanii ravnovesiya dvukhfazovoi uprugoi sredy”, Zap. nauchn. semin. POMI, 459, 2017, 66–82
[5] V. G. Osmolovskii, “Fazovye perekhody dlya dvukhfazovykh sred s odinakovymi modulyami uprugosti”, Probl. mat. anal., 106 (2020), 139–147 | Zbl
[6] V. G. Osmolovskii, “Tochnye resheniya variatsionnoi zadachi teorii fazovykh perekhodov v mekhanike sploshnykh sred”, Probl. mat.anal., 27 (2004), 171–206
[7] G. Allaire, R. V. Kohn, “Optimal bounds on the effective behavior of a mixture of two well-odered elastic material”, Q. Appl. Math., 51:4 (1983), 643–674 | DOI | MR
[8] Y. Grabovsky, “Bounds and extremal microstructures for two-component composites: A unified treatment based on the translation method”, Proc. R. Soc. Lond., Ser. A, 452 (1996), 919–944 | DOI | MR | Zbl
[9] V. G. Osmolovskii, “Modelnaya variatsionnaya zadacha o fazovykh perekhodakh v mekhanike sploshnykh sred”, Probl. mat. anal., 108 (2021), 113–124 | Zbl
[10] G. Allaire, G. Francfort, “Existence of minimizers for non-quasiconvex functionals arising in optimal design”, Anal. Non Lineaire, Ann. Inst. Henry Poincare, 15, no. 3, 1998, 301–339 | DOI | MR | Zbl
[11] G. Allaire, V. Lods, “Minimizers for a double-well problem with affine boundary conditions”, Proc. R. Soc. Edinb., Sect. A, Math., 129:3 (1999), 439–446 | DOI | MR
[12] V. G. Osmolovskii, “Matematicheskie voprosy teorii fazovykh perekhodov v mekhanike sploshnykh sred”, Algebra i analiz, 29:5 (2017), 111–178
[13] V. G. Osmolovskii, “Ravnovesnye energii sloistykh kompozitnykh i dvukhfazovykh sred pri periodicheskikh i nulevykh granichnykh usloviyakh”, Probl. mat.anal., 120 (2023), 71–79 | Zbl