A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 228-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give a sufficient condition for the unsolvability of the two-dimensional problem of phase transitions in the mechanics of two-phase elastic media with identical tensors of elastic moduli. It is of geometric nature and is based on the properties of the set of points of contact of the ellipsoid in the three-dimensional space of $2\times2$-symmetric matrices with the conical surface in this space. The ellipsoid depends on the elasticity moduli tensor and the difference of residual deformation tensors while the conical surface consists of degenerate matrices.
@article{ZNSL_2024_536_a10,
     author = {V. G. Osmolovskii},
     title = {A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {228--246},
     year = {2024},
     volume = {536},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a10/}
}
TY  - JOUR
AU  - V. G. Osmolovskii
TI  - A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 228
EP  - 246
VL  - 536
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a10/
LA  - ru
ID  - ZNSL_2024_536_a10
ER  - 
%0 Journal Article
%A V. G. Osmolovskii
%T A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 228-246
%V 536
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a10/
%G ru
%F ZNSL_2024_536_a10
V. G. Osmolovskii. A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 228-246. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a10/

[1] M. A.Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990

[2] V. G. Osmolovskii, “Temperatury fazovykh perekhodov dlya variatsionnoi zadachi o ravnovesii dvukhfazovykh sred s ogranicheniyami”, Pobl. mat.anal., 114 (2022), 63–70 | Zbl

[3] V. G. Osmolovskii, “Fazovye perekhody dlya dvukhfazovykh sred s odinakovymi modulyami uprugosti”, Probl. mat. anal., 106 (2020), 139–147 | Zbl

[4] V. G. Osmolovskii, “Ob'emnaya dolya odnoi iz faz v sostoyanii ravnovesiya dvukhfazovoi uprugoi sredy”, Zap. nauchn. semin. POMI, 459, 2017, 66–82

[5] V. G. Osmolovskii, “Fazovye perekhody dlya dvukhfazovykh sred s odinakovymi modulyami uprugosti”, Probl. mat. anal., 106 (2020), 139–147 | Zbl

[6] V. G. Osmolovskii, “Tochnye resheniya variatsionnoi zadachi teorii fazovykh perekhodov v mekhanike sploshnykh sred”, Probl. mat.anal., 27 (2004), 171–206

[7] G. Allaire, R. V. Kohn, “Optimal bounds on the effective behavior of a mixture of two well-odered elastic material”, Q. Appl. Math., 51:4 (1983), 643–674 | DOI | MR

[8] Y. Grabovsky, “Bounds and extremal microstructures for two-component composites: A unified treatment based on the translation method”, Proc. R. Soc. Lond., Ser. A, 452 (1996), 919–944 | DOI | MR | Zbl

[9] V. G. Osmolovskii, “Modelnaya variatsionnaya zadacha o fazovykh perekhodakh v mekhanike sploshnykh sred”, Probl. mat. anal., 108 (2021), 113–124 | Zbl

[10] G. Allaire, G. Francfort, “Existence of minimizers for non-quasiconvex functionals arising in optimal design”, Anal. Non Lineaire, Ann. Inst. Henry Poincare, 15, no. 3, 1998, 301–339 | DOI | MR | Zbl

[11] G. Allaire, V. Lods, “Minimizers for a double-well problem with affine boundary conditions”, Proc. R. Soc. Edinb., Sect. A, Math., 129:3 (1999), 439–446 | DOI | MR

[12] V. G. Osmolovskii, “Matematicheskie voprosy teorii fazovykh perekhodov v mekhanike sploshnykh sred”, Algebra i analiz, 29:5 (2017), 111–178

[13] V. G. Osmolovskii, “Ravnovesnye energii sloistykh kompozitnykh i dvukhfazovykh sred pri periodicheskikh i nulevykh granichnykh usloviyakh”, Probl. mat.anal., 120 (2023), 71–79 | Zbl