A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 228-246
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a sufficient condition for the unsolvability of the two-dimensional problem of phase transitions in the mechanics of two-phase elastic media with identical tensors of elastic moduli. It is of geometric nature and is based on the properties of the set of points of contact of the ellipsoid in the three-dimensional space of $2\times2$-symmetric matrices with the conical surface in this space. The ellipsoid depends on the elasticity moduli tensor and the difference of residual deformation tensors while the conical surface consists of degenerate matrices.
@article{ZNSL_2024_536_a10,
author = {V. G. Osmolovskii},
title = {A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {228--246},
publisher = {mathdoc},
volume = {536},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a10/}
}
TY - JOUR AU - V. G. Osmolovskii TI - A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 228 EP - 246 VL - 536 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a10/ LA - ru ID - ZNSL_2024_536_a10 ER -
V. G. Osmolovskii. A two-dimensional problem of phase transitions in continuum mechanics with identical elastic modules. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 228-246. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a10/