@article{ZNSL_2024_536_a1,
author = {E. A. Alfano and L. Fattorusso and D. K. Palagachev and L. G. Softova},
title = {Boundedness of the weak solutions to conormal problems for quasilinear elliptic equations with {Morrey} data},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--25},
year = {2024},
volume = {536},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a1/}
}
TY - JOUR AU - E. A. Alfano AU - L. Fattorusso AU - D. K. Palagachev AU - L. G. Softova TI - Boundedness of the weak solutions to conormal problems for quasilinear elliptic equations with Morrey data JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 7 EP - 25 VL - 536 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a1/ LA - en ID - ZNSL_2024_536_a1 ER -
%0 Journal Article %A E. A. Alfano %A L. Fattorusso %A D. K. Palagachev %A L. G. Softova %T Boundedness of the weak solutions to conormal problems for quasilinear elliptic equations with Morrey data %J Zapiski Nauchnykh Seminarov POMI %D 2024 %P 7-25 %V 536 %U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a1/ %G en %F ZNSL_2024_536_a1
E. A. Alfano; L. Fattorusso; D. K. Palagachev; L. G. Softova. Boundedness of the weak solutions to conormal problems for quasilinear elliptic equations with Morrey data. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 7-25. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a1/
[1] D. R. Adams, “Traces of potentials arising from translation invariant operators”, Ann. Scuola Norm. Sup. Pisa, 25:3 (1971), 203–217 | MR | Zbl
[2] A. A. Arkhipova, “Some applications of reverse Hölder inequalities with a boundary integral”, J. Math. Sci., 72:6 (1994), 3370–3378 | DOI | MR
[3] A. A. Arkhipova, “Reverse Hölder inequalities with boundary integrals and $L^p$-estimates for solutions of nonlinear elliptic and parabolic boundary-value problems. Nonlinear evolution equations”, Amer. Math. Soc. Transl. Ser., 164:2 (1995), 15–42 | MR | Zbl
[4] S.-S. Byun, D.K. Palagachev, P. Shin, “Global Hölder continuity of solutions to quasilinear equations with Morrey data”, Commun. Contemp. Math., 24 (2022), 2150062 | DOI | MR | Zbl
[5] Ph. Hartman, G. Stampacchia, “On some non-linear elliptic differential-functional equations”, Acta Math., 115 (1966), 271–310 | DOI | MR | Zbl
[6] D. Kim, “Global regularity of solutions to quasilinear conormal derivative problem with controlled growth”, J. Korean Math. Soc., 49:6 (2012), 1273–1299 | DOI | MR | Zbl
[7] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear equations of elliptic type, Second Edition Revised, Nauka, M., 1973 | MR | Zbl
[8] G. M. Lieberman, “The conormal derivative problem for elliptic equations of variational type”, J. Differential Equations, 49:2 (1983), 218–257 | DOI | MR | Zbl
[9] G. M. Lieberman, “The conormal derivative problem for equations of variational type in nonsmooth domains”, Trans. Amer. Math. Soc., 330:1 (1992), 41–67 | DOI | MR | Zbl
[10] G. M. Lieberman, Oblique derivative problems for elliptic equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013 | MR | Zbl
[11] V.G. Maz'ya, Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften, 342, Second, Revised and Augmented Edition, Springer, Heidelberg, 2011 | DOI | MR | Zbl
[12] A. I. Nazarov, N. N. Ural'tseva, “The Harnack inequality and related properties of solutions of elliptic and parabolic equations with divergence-free lower-order coefficients”, Algebra i Analiz, 23:1 (2011), 136–168 | MR
[13] L. C. Piccinini, “Inclusioni tra spazi di Morrey”, Boll. Un. Mat. Ital., 2:4 (1969), 95–99 | MR | Zbl
[14] P. Winkert, “$L^\infty$-estimates for nonlinear elliptic Neumann boundary value problems”, NoDEA Nonlinear Differential Equations Appl., 17:3 (2010), 289–302 | DOI | MR | Zbl