Boundedness of the weak solutions to conormal problems for quasilinear elliptic equations with Morrey data
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 7-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a conormal problem for a class of quasilinear divergence form elliptic equations modeled on the $m$-Laplacian. The nonlinearities support controlled growths in the solution and its gradient, while their behaviour with respect to the independent variable is restrained in terms of Morrey spaces. We show global essential boundedness for the weak solutions, generalizing this way the classical $L^p$-result of Ladyzhenskaya and Ural'tseva to the settings of the Morrey spaces.
@article{ZNSL_2024_536_a1,
     author = {E. A. Alfano and L. Fattorusso and D. K. Palagachev and L. G. Softova},
     title = {Boundedness of the weak solutions to conormal problems for quasilinear elliptic equations with {Morrey} data},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--25},
     year = {2024},
     volume = {536},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a1/}
}
TY  - JOUR
AU  - E. A. Alfano
AU  - L. Fattorusso
AU  - D. K. Palagachev
AU  - L. G. Softova
TI  - Boundedness of the weak solutions to conormal problems for quasilinear elliptic equations with Morrey data
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 7
EP  - 25
VL  - 536
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a1/
LA  - en
ID  - ZNSL_2024_536_a1
ER  - 
%0 Journal Article
%A E. A. Alfano
%A L. Fattorusso
%A D. K. Palagachev
%A L. G. Softova
%T Boundedness of the weak solutions to conormal problems for quasilinear elliptic equations with Morrey data
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 7-25
%V 536
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a1/
%G en
%F ZNSL_2024_536_a1
E. A. Alfano; L. Fattorusso; D. K. Palagachev; L. G. Softova. Boundedness of the weak solutions to conormal problems for quasilinear elliptic equations with Morrey data. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 51, Tome 536 (2024), pp. 7-25. http://geodesic.mathdoc.fr/item/ZNSL_2024_536_a1/

[1] D. R. Adams, “Traces of potentials arising from translation invariant operators”, Ann. Scuola Norm. Sup. Pisa, 25:3 (1971), 203–217 | MR | Zbl

[2] A. A. Arkhipova, “Some applications of reverse Hölder inequalities with a boundary integral”, J. Math. Sci., 72:6 (1994), 3370–3378 | DOI | MR

[3] A. A. Arkhipova, “Reverse Hölder inequalities with boundary integrals and $L^p$-estimates for solutions of nonlinear elliptic and parabolic boundary-value problems. Nonlinear evolution equations”, Amer. Math. Soc. Transl. Ser., 164:2 (1995), 15–42 | MR | Zbl

[4] S.-S. Byun, D.K. Palagachev, P. Shin, “Global Hölder continuity of solutions to quasilinear equations with Morrey data”, Commun. Contemp. Math., 24 (2022), 2150062 | DOI | MR | Zbl

[5] Ph. Hartman, G. Stampacchia, “On some non-linear elliptic differential-functional equations”, Acta Math., 115 (1966), 271–310 | DOI | MR | Zbl

[6] D. Kim, “Global regularity of solutions to quasilinear conormal derivative problem with controlled growth”, J. Korean Math. Soc., 49:6 (2012), 1273–1299 | DOI | MR | Zbl

[7] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear equations of elliptic type, Second Edition Revised, Nauka, M., 1973 | MR | Zbl

[8] G. M. Lieberman, “The conormal derivative problem for elliptic equations of variational type”, J. Differential Equations, 49:2 (1983), 218–257 | DOI | MR | Zbl

[9] G. M. Lieberman, “The conormal derivative problem for equations of variational type in nonsmooth domains”, Trans. Amer. Math. Soc., 330:1 (1992), 41–67 | DOI | MR | Zbl

[10] G. M. Lieberman, Oblique derivative problems for elliptic equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013 | MR | Zbl

[11] V.G. Maz'ya, Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften, 342, Second, Revised and Augmented Edition, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[12] A. I. Nazarov, N. N. Ural'tseva, “The Harnack inequality and related properties of solutions of elliptic and parabolic equations with divergence-free lower-order coefficients”, Algebra i Analiz, 23:1 (2011), 136–168 | MR

[13] L. C. Piccinini, “Inclusioni tra spazi di Morrey”, Boll. Un. Mat. Ital., 2:4 (1969), 95–99 | MR | Zbl

[14] P. Winkert, “$L^\infty$-estimates for nonlinear elliptic Neumann boundary value problems”, NoDEA Nonlinear Differential Equations Appl., 17:3 (2010), 289–302 | DOI | MR | Zbl