@article{ZNSL_2024_535_a9,
author = {A. A. Kotova and A. S. Lotnikov},
title = {Criticality conditions in the {Derrida{\textendash}Retaux} model with a random number of terms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {141--149},
year = {2024},
volume = {535},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/}
}
A. A. Kotova; A. S. Lotnikov. Criticality conditions in the Derrida–Retaux model with a random number of terms. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 141-149. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/
[1] P. Collet, J. P. Eckmann, V. Glaser, A. Martin, “Study of the iterations of a mapping associated to a spin-glass model”, Commun. Math. Phys., 94 (1984), 353–370 | DOI | MR | Zbl
[2] X. Chen, B. Hu Y. Derrida, M. Lifshits, Z. Shi, “A hierarchical renormalization model: some properties and open questions”, Sojourns in Probability Theory and Statistical Physics, A Festschrift for Ch. M. Newman, v. III, Springer Proc. Math. Statist., Interacting Particle Systems and Random Walks, ed. V. Sidoravičius, Springer, 2019, 166–186 | DOI | MR | Zbl
[3] B. Derrida, M. Retaux, “The depinning transition in presence of disorder: a toy model”, J. Statist. Phys., 156 (2014), 268–290 | DOI | Zbl
[4] B. Derrida, V. Hakim, J. Vannimenus, “Effect of disorder on two-dimensional wetting”, J. Statist. Phys., 66 (1992), 1189–1213 | DOI | MR | Zbl
[5] G. Giacomin, H. Lacoin, F. L. Toninelli, “Hierarchical pinning models, quadratic maps and quenched disorder”, Probab. Theory Relat. Fields, 147 (2010), 185–216 | DOI | MR | Zbl
[6] Y. Hu, Z. Shi, “The free energy in the Derrida-Retaux recursive model”, J. Statist. Phys., 172 (2018), 718–741 | DOI | MR | Zbl
[7] H. Lacoin, “Hierarchical pinning model with site disorder: disorder is marginally relevant”, Probab. Theory Relat. Fields, 148 (2010), 159–175 | DOI | MR | Zbl