Criticality conditions in the Derrida--Retaux model with a random number of terms
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 141-149
Voir la notice de l'article provenant de la source Math-Net.Ru
The article considers the Derrida–Retaux model with a random number of terms, i.e. a sequence of integer random variables defined by the relations $ X_{n + 1} = (X_n^{(1)} +\cdots + X_n^{(N_n)} - a)^{+}$, $n\ge 0$, where $X_n^{(j)}$ are independent copies of $X_n$, the values of $N_j$ are independent and identically distributed, $a$ is a positive integer. The energy in the model is defined as $Q:=\lim\limits_{n\to\infty} \frac{\mathbf{E} (X_{n})}{(\mathbf{E} N_1)^{n}}$. We present sufficient conditions (in terms of distributions of $X_0$ and $N_1$) for subcritical ($Q=0$) and supercritical ($Q>0$) regimes of model behavior.
@article{ZNSL_2024_535_a9,
author = {A. A. Kotova and A. S. Lotnikov},
title = {Criticality conditions in the {Derrida--Retaux} model with a random number of terms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {141--149},
publisher = {mathdoc},
volume = {535},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/}
}
TY - JOUR AU - A. A. Kotova AU - A. S. Lotnikov TI - Criticality conditions in the Derrida--Retaux model with a random number of terms JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 141 EP - 149 VL - 535 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/ LA - ru ID - ZNSL_2024_535_a9 ER -
A. A. Kotova; A. S. Lotnikov. Criticality conditions in the Derrida--Retaux model with a random number of terms. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 141-149. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/