Criticality conditions in the Derrida–Retaux model with a random number of terms
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 141-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article considers the Derrida–Retaux model with a random number of terms, i.e. a sequence of integer random variables defined by the relations $ X_{n + 1} = (X_n^{(1)} +\cdots + X_n^{(N_n)} - a)^{+}$, $n\ge 0$, where $X_n^{(j)}$ are independent copies of $X_n$, the values of $N_j$ are independent and identically distributed, $a$ is a positive integer. The energy in the model is defined as $Q:=\lim\limits_{n\to\infty} \frac{\mathbf{E} (X_{n})}{(\mathbf{E} N_1)^{n}}$. We present sufficient conditions (in terms of distributions of $X_0$ and $N_1$) for subcritical ($Q=0$) and supercritical ($Q>0$) regimes of model behavior.
@article{ZNSL_2024_535_a9,
     author = {A. A. Kotova and A. S. Lotnikov},
     title = {Criticality conditions in the {Derrida{\textendash}Retaux} model with a random number of terms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--149},
     year = {2024},
     volume = {535},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/}
}
TY  - JOUR
AU  - A. A. Kotova
AU  - A. S. Lotnikov
TI  - Criticality conditions in the Derrida–Retaux model with a random number of terms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 141
EP  - 149
VL  - 535
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/
LA  - ru
ID  - ZNSL_2024_535_a9
ER  - 
%0 Journal Article
%A A. A. Kotova
%A A. S. Lotnikov
%T Criticality conditions in the Derrida–Retaux model with a random number of terms
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 141-149
%V 535
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/
%G ru
%F ZNSL_2024_535_a9
A. A. Kotova; A. S. Lotnikov. Criticality conditions in the Derrida–Retaux model with a random number of terms. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 141-149. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/

[1] P. Collet, J. P. Eckmann, V. Glaser, A. Martin, “Study of the iterations of a mapping associated to a spin-glass model”, Commun. Math. Phys., 94 (1984), 353–370 | DOI | MR | Zbl

[2] X. Chen, B. Hu Y. Derrida, M. Lifshits, Z. Shi, “A hierarchical renormalization model: some properties and open questions”, Sojourns in Probability Theory and Statistical Physics, A Festschrift for Ch. M. Newman, v. III, Springer Proc. Math. Statist., Interacting Particle Systems and Random Walks, ed. V. Sidoravičius, Springer, 2019, 166–186 | DOI | MR | Zbl

[3] B. Derrida, M. Retaux, “The depinning transition in presence of disorder: a toy model”, J. Statist. Phys., 156 (2014), 268–290 | DOI | Zbl

[4] B. Derrida, V. Hakim, J. Vannimenus, “Effect of disorder on two-dimensional wetting”, J. Statist. Phys., 66 (1992), 1189–1213 | DOI | MR | Zbl

[5] G. Giacomin, H. Lacoin, F. L. Toninelli, “Hierarchical pinning models, quadratic maps and quenched disorder”, Probab. Theory Relat. Fields, 147 (2010), 185–216 | DOI | MR | Zbl

[6] Y. Hu, Z. Shi, “The free energy in the Derrida-Retaux recursive model”, J. Statist. Phys., 172 (2018), 718–741 | DOI | MR | Zbl

[7] H. Lacoin, “Hierarchical pinning model with site disorder: disorder is marginally relevant”, Probab. Theory Relat. Fields, 148 (2010), 159–175 | DOI | MR | Zbl