Criticality conditions in the Derrida--Retaux model with a random number of terms
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 141-149

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the Derrida–Retaux model with a random number of terms, i.e. a sequence of integer random variables defined by the relations $ X_{n + 1} = (X_n^{(1)} +\cdots + X_n^{(N_n)} - a)^{+}$, $n\ge 0$, where $X_n^{(j)}$ are independent copies of $X_n$, the values of $N_j$ are independent and identically distributed, $a$ is a positive integer. The energy in the model is defined as $Q:=\lim\limits_{n\to\infty} \frac{\mathbf{E} (X_{n})}{(\mathbf{E} N_1)^{n}}$. We present sufficient conditions (in terms of distributions of $X_0$ and $N_1$) for subcritical ($Q=0$) and supercritical ($Q>0$) regimes of model behavior.
@article{ZNSL_2024_535_a9,
     author = {A. A. Kotova and A. S. Lotnikov},
     title = {Criticality conditions in the {Derrida--Retaux} model with a random number of terms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--149},
     publisher = {mathdoc},
     volume = {535},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/}
}
TY  - JOUR
AU  - A. A. Kotova
AU  - A. S. Lotnikov
TI  - Criticality conditions in the Derrida--Retaux model with a random number of terms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 141
EP  - 149
VL  - 535
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/
LA  - ru
ID  - ZNSL_2024_535_a9
ER  - 
%0 Journal Article
%A A. A. Kotova
%A A. S. Lotnikov
%T Criticality conditions in the Derrida--Retaux model with a random number of terms
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 141-149
%V 535
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/
%G ru
%F ZNSL_2024_535_a9
A. A. Kotova; A. S. Lotnikov. Criticality conditions in the Derrida--Retaux model with a random number of terms. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 141-149. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a9/