On tests of Neyman type for testing composite nonparametric hypothesis
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 120-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For nonparametric hypothesis testing of symmetry, homogeneity and independency we describe uniformly consistent nonparametric sets for tests of Neyman type. The description is exhaustive except for those cases where the bulk of the coefficients of the Fourier series expansion of alternative densities lie far in the tail of the expansion. The desciptions do not depend on hypothesis.
@article{ZNSL_2024_535_a8,
     author = {M. S. Ermakov},
     title = {On tests of {Neyman} type for testing composite nonparametric hypothesis},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--140},
     year = {2024},
     volume = {535},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a8/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - On tests of Neyman type for testing composite nonparametric hypothesis
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 120
EP  - 140
VL  - 535
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a8/
LA  - ru
ID  - ZNSL_2024_535_a8
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T On tests of Neyman type for testing composite nonparametric hypothesis
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 120-140
%V 535
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a8/
%G ru
%F ZNSL_2024_535_a8
M. S. Ermakov. On tests of Neyman type for testing composite nonparametric hypothesis. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 120-140. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a8/

[1] A. K. Bera, A. Ghosh, “Neyman's smooth test and its applications in Econometrics”, Statistics Textbooks and Monographs, 165 (2002), 177–230 | MR

[2] J. Durbin, Distribution theory for tests based on the sample distribution function, SIAM, 1973 | MR | Zbl

[3] M. S. Ermakov, “Minimaksnaya neparametricheskaya proverka gipotez o plotnosti raspredeleniya”, Teoriya veroyatn. i ee primen., 39 (1994), 488–512 | Zbl

[4] M. S. Ermakov, “Asimptoticheski minimaksnye kriterii proverki slozhnykh neparametricheskikh gipotez”, Probl. peredachi inform., 32:2 (1996), 54–67 | MR | Zbl

[5] M. S. Ermakov, “Asimptoticheskaya minimaksnost kriteriev khi-kvadrat”, Teoriya veroyatn. i ee primen., 42:4 (1997), 668–695 | DOI | MR | Zbl

[6] M. S. Ermakov, “Ob asimptoticheski minimaksnom obnaruzhenii signala v gaussovskom belom shume”, Zap. nauchn. semin. POMI, 474, 2018, 124–138

[7] M. S. Ermakov, “O ravnomernoi sostoyatelnosti neparametricheskikh kriteriev. I”, Zap. nauchn. semin. POMI, 486, 2019, 98–147

[8] M. S. Ermakov, “O ravnomernoi sostoyatelnosti neparametricheskikh kriteriev. II”, Zap. nauchn. semin. POMI, 495, 2020, 147–176

[9] M. S. Ermakov, D. Yu. Kapatsa, “O ravnomernoi sostoyatelnosti neparametricheskikh kriteriev tipa Neimana”, Vestnik Sankt-Peterburgskogo universiteta, ser. 1. Matematika, mekhanika, astronomiya, 10(68):2 (2023), 212–225 | Zbl

[10] E. Giné, R. Nickl, Mathematical Foundations of Infinite-dimensional Statistical Models, Cambridge university press, 2021 | MR | Zbl

[11] Y. I. Ingster, I. A. Suslina, “Nonparametric goodness-of-fit testing under Gaussian models”, Lect. Notes Statist., 169, 2003 | DOI | MR | Zbl

[12] M. G. Kendall, A. Stuart, The Advanced Theory of Statistics, v. 2, Inference and Relationship, 3rd ed., Hafner Publishing Company, 1961 | MR

[13] G. Kerkyacharian, D. Picard, “Density estimation by kernel and wavelets methods: optimality of Besov spaces”, Statist. Probab. Lett., 18 (1993), 327–336 | DOI | MR | Zbl

[14] E. L. Lehmann, J. P. Romano, G. Casella, Testing Statistical Hypotheses, Springer, 2005 | MR | Zbl

[15] J. Neyman, “Smooth test for goodness of fit”, Scand. Actuarial J., 20:3–4 (1937), 149–199 | DOI | Zbl

[16] A. Zygmund, Trigonometric series, Cambridge Univ. Press, London, 2002 | MR | Zbl