Infinite-dimensional conic Steiner formula
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 105-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The classical Steiner formula expresses the volume of the neighborhood of a convex compact set in $\mathbb{R}^d$ as a polynomial in the radius of the neighborhood. In Tsirelson's work [16], this result was extended to the infinite-dimensional case. A spherical analogue of the Steiner formula for convex subsets of $\mathbb{S}^{d-1}$ is also well-known. The aim of this note is to obtain an infinite-dimensional version of this spherical analogue.
@article{ZNSL_2024_535_a7,
     author = {M. K. Dospolova and D. N. Zaporozhets},
     title = {Infinite-dimensional conic {Steiner} formula},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--119},
     year = {2024},
     volume = {535},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a7/}
}
TY  - JOUR
AU  - M. K. Dospolova
AU  - D. N. Zaporozhets
TI  - Infinite-dimensional conic Steiner formula
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 105
EP  - 119
VL  - 535
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a7/
LA  - ru
ID  - ZNSL_2024_535_a7
ER  - 
%0 Journal Article
%A M. K. Dospolova
%A D. N. Zaporozhets
%T Infinite-dimensional conic Steiner formula
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 105-119
%V 535
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a7/
%G ru
%F ZNSL_2024_535_a7
M. K. Dospolova; D. N. Zaporozhets. Infinite-dimensional conic Steiner formula. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 105-119. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a7/

[1] C. B. Allendoerfer, “Steiner's formulae on a general ${S}^{n+1}$”, Bull. Amer. Math. Soc., 54 (1948), 128–135 | DOI | MR | Zbl

[2] S. Chevet, “Processus Gaussiens et volumes mixtes”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 36:1 (1976), 47–65 | DOI | MR | Zbl

[3] F. Götze, Z. Kabluchko, D. N. Zaporozhets, “Grassmann angles and absorption probabilities of Gaussian convex hulls”, Zap. nauchn. semin. POMI, 501, 2021, 126–148 | MR

[4] B. Grünbaum, “Grassmann angles of convex polytopes”, Acta Math., 121 (1968), 293–302 | DOI | MR | Zbl

[5] H. Hadwiger, “Das Wills'sche Funktional”, Monatsh. Math., 79 (1975), 213–221 | DOI | MR | Zbl

[6] G. Herglotz, “Über die Steinersche Formel für Parallelflächen”, Abh. Math. Semin. Univ. Hamb., 15 (1943), 165–177 | DOI | MR | Zbl

[7] D. Nualart, The Malliavin Calculus and Related Topics, Probab. Appl., 2nd edition, Springer, Berlin, 2006 | MR | Zbl

[8] L. A. Santaló, Integral Geometry and Geometric Probability, v. 1, Encyclopedia Math. Appl., Addison–Wesley Publishing Co., Reading, Mass.–London–Amsterdam, 1976 \ | MR | Zbl

[9] R. Schneider, Convex Bodies: the Brunn–Minkowski Theory, Encyclopedia Math. Appl., 151, expanded edition, Cambridge University Press, Cambridge, 2014 | MR | Zbl

[10] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probab. Appl. (N.Y.), Springer, Berlin, 2008 | MR | Zbl

[11] R. A. Vitale, “Convex bodies and Gaussian processes”, Image Anal. Stereol., 29:1 (2010), 13–18 | DOI | MR | Zbl

[12] H. Weyl, “On the volume of tubes”, Amer. J. Math., 61:2 (1939), 461–472 | DOI | MR | Zbl

[13] M. K. Dospolova, “Ugly Grassmana beskonechnomernykh konusov”, Zap. nauchn. semin. POMI, 525, 2023, 51–70 | MR

[14] V. N. Sudakov, “Geometricheskie problemy teorii beskonechnomernykh veroyatnostnykh raspredelenii”, Trudy MIAN, 141, 1976, 3–191

[15] B. S. Tsirelson, “Estestvennaya modifikatsiya sluchainogo protsessa i ee prilozhenie k sluchainym funktsionalnym ryadam i gaussovskim meram”, Zap. nauchn. semin. LOMI, 55, 1976, 35–63 | Zbl

[16] B. S. Tsirelson, “Geometricheskii podkhod k otsenke maksimalnogo pravdopodobiya dlya beskonechnomernogo gaussovskogo sdviga. II”, Teoriya veroyatn. i ee primen., 30:4 (1985), 772–779 | MR