Infinite-dimensional conic Steiner formula
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 105-119

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Steiner formula expresses the volume of the neighborhood of a convex compact set in $\mathbb{R}^d$ as a polynomial in the radius of the neighborhood. In Tsirelson's work [16], this result was extended to the infinite-dimensional case. A spherical analogue of the Steiner formula for convex subsets of $\mathbb{S}^{d-1}$ is also well-known. The aim of this note is to obtain an infinite-dimensional version of this spherical analogue.
@article{ZNSL_2024_535_a7,
     author = {M. K. Dospolova and D. N. Zaporozhets},
     title = {Infinite-dimensional conic {Steiner} formula},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--119},
     publisher = {mathdoc},
     volume = {535},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a7/}
}
TY  - JOUR
AU  - M. K. Dospolova
AU  - D. N. Zaporozhets
TI  - Infinite-dimensional conic Steiner formula
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 105
EP  - 119
VL  - 535
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a7/
LA  - ru
ID  - ZNSL_2024_535_a7
ER  - 
%0 Journal Article
%A M. K. Dospolova
%A D. N. Zaporozhets
%T Infinite-dimensional conic Steiner formula
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 105-119
%V 535
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a7/
%G ru
%F ZNSL_2024_535_a7
M. K. Dospolova; D. N. Zaporozhets. Infinite-dimensional conic Steiner formula. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 105-119. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a7/