Infinite-dimensional conic Steiner formula
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 105-119
Voir la notice de l'article provenant de la source Math-Net.Ru
The classical Steiner formula expresses the volume of the neighborhood of a convex compact set in $\mathbb{R}^d$ as a polynomial in the radius of the neighborhood. In Tsirelson's work [16], this result was extended to the infinite-dimensional case. A spherical analogue of the Steiner formula for convex subsets of $\mathbb{S}^{d-1}$ is also well-known. The aim of this note is to obtain an infinite-dimensional version of this spherical analogue.
@article{ZNSL_2024_535_a7,
author = {M. K. Dospolova and D. N. Zaporozhets},
title = {Infinite-dimensional conic {Steiner} formula},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {105--119},
publisher = {mathdoc},
volume = {535},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a7/}
}
M. K. Dospolova; D. N. Zaporozhets. Infinite-dimensional conic Steiner formula. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 105-119. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a7/