@article{ZNSL_2024_535_a6,
author = {Yu. A. Davydov and D. S. Rahmankin},
title = {Limit theorems for randomized stationary processes and stable laws},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {92--104},
year = {2024},
volume = {535},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a6/}
}
Yu. A. Davydov; D. S. Rahmankin. Limit theorems for randomized stationary processes and stable laws. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 92-104. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a6/
[1] K. Bartkiewicz, A. Jakubowski, Th. Mikosch, O. Wintenberger, “Stable limits for sums of dependent infinite variance random variables”, Probab. Theory Relat. Fields, 150:3 (2011), 337–372 | DOI | MR | Zbl
[2] R. C. Bradley, Introduction to Strong Mixing Conditions, v. 1–3, Kendrick Press, 2007 | MR
[3] A. V. Bulinsky, A. P. Shashkin, Limit Theorems for Associated Random Fields and Related Systems, World Scientific, 2007 | MR
[4] Yu. Davydov, A. Tempelman, “Randomized limit theorems for stationary ergodic processes and fields”, Stoch. Processes Appl., 174 (2024) | DOI | MR | Zbl
[5] I. A. Ibragimov, Y. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971 | MR | Zbl
[6] W. Feller, An Introduction to Probability Theory and its Applications, v. 2, Wiley, 1957 | MR | Zbl
[7] S. I. Resnick, Extreme Values, Regular Variation and Point Processes, Springer, Berlin, 1987 | MR | Zbl
[8] E. Rio, Inequalities and limit theorems for weakly dependent sequences, , 2011 cel-00867106 | MR
[9] G. Samorodnitsky, M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman and Hall, London–New York, 1994 | MR | Zbl
[10] A. Tempelman, “Randomized multivariate central limit theorems for ergodic homogeneous random fields”, Stoch. Processes Appl., 143 (2022), 89–105 | DOI | MR | Zbl