Limit theorems for randomized stationary processes and stable laws
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 92-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Davydov Yu. A., Rahmankin D. S. Limit theorems for randomized stationary processes and stable laws. \smallbreak \nopagebreak The goal of this work is to find conditions under which partial sums of strictly stationary sequences are attracted to a non-Gaussian stable limit. In contrast to the results available in the literature, we come away from the traditional methods and use a new approach based on randomization of the initial data. His effectiveness is confirmed by examples. Thus, it turned out that in the case of uniformly strong mixing, without any conditions on the mixing coefficient, the convergence of randomized sums occurs whenever when the marginal distribution lies in the area of attraction of a stable law.
@article{ZNSL_2024_535_a6,
     author = {Yu. A. Davydov and D. S. Rahmankin},
     title = {Limit theorems for randomized stationary processes and stable laws},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--104},
     year = {2024},
     volume = {535},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a6/}
}
TY  - JOUR
AU  - Yu. A. Davydov
AU  - D. S. Rahmankin
TI  - Limit theorems for randomized stationary processes and stable laws
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 92
EP  - 104
VL  - 535
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a6/
LA  - ru
ID  - ZNSL_2024_535_a6
ER  - 
%0 Journal Article
%A Yu. A. Davydov
%A D. S. Rahmankin
%T Limit theorems for randomized stationary processes and stable laws
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 92-104
%V 535
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a6/
%G ru
%F ZNSL_2024_535_a6
Yu. A. Davydov; D. S. Rahmankin. Limit theorems for randomized stationary processes and stable laws. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 92-104. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a6/

[1] K. Bartkiewicz, A. Jakubowski, Th. Mikosch, O. Wintenberger, “Stable limits for sums of dependent infinite variance random variables”, Probab. Theory Relat. Fields, 150:3 (2011), 337–372 | DOI | MR | Zbl

[2] R. C. Bradley, Introduction to Strong Mixing Conditions, v. 1–3, Kendrick Press, 2007 | MR

[3] A. V. Bulinsky, A. P. Shashkin, Limit Theorems for Associated Random Fields and Related Systems, World Scientific, 2007 | MR

[4] Yu. Davydov, A. Tempelman, “Randomized limit theorems for stationary ergodic processes and fields”, Stoch. Processes Appl., 174 (2024) | DOI | MR | Zbl

[5] I. A. Ibragimov, Y. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971 | MR | Zbl

[6] W. Feller, An Introduction to Probability Theory and its Applications, v. 2, Wiley, 1957 | MR | Zbl

[7] S. I. Resnick, Extreme Values, Regular Variation and Point Processes, Springer, Berlin, 1987 | MR | Zbl

[8] E. Rio, Inequalities and limit theorems for weakly dependent sequences, , 2011 cel-00867106 | MR

[9] G. Samorodnitsky, M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman and Hall, London–New York, 1994 | MR | Zbl

[10] A. Tempelman, “Randomized multivariate central limit theorems for ergodic homogeneous random fields”, Stoch. Processes Appl., 143 (2022), 89–105 | DOI | MR | Zbl