@article{ZNSL_2024_535_a5,
author = {F. G\"otze and A. Yu. Zaitsev},
title = {G\"otze {F.,} {Zaitsev} {A.} {Yu.} {Improved} applications of {Arak's} inequalities to the {Littlewood{\textendash}Offord} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {70--91},
year = {2024},
volume = {535},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a5/}
}
TY - JOUR AU - F. Götze AU - A. Yu. Zaitsev TI - Götze F., Zaitsev A. Yu. Improved applications of Arak's inequalities to the Littlewood–Offord problem JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 70 EP - 91 VL - 535 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a5/ LA - ru ID - ZNSL_2024_535_a5 ER -
F. Götze; A. Yu. Zaitsev. Götze F., Zaitsev A. Yu. Improved applications of Arak's inequalities to the Littlewood–Offord problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 70-91. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a5/
[1] T. V. Arak, “O sblizhenii $n$-kratnykh svertok raspredelenii, imeyuschikh neotritsatelnuyu kharakteristicheskuyu funktsiyu, s soprovozhdayuschimi zakonami”, Teoriya veroyatn. i ee primen., 25:2 (1980), 225–246 | MR | Zbl
[2] T. V. Arak, “On the convergence rate in Kolmogorov's uniform limit theorem. I”, Teoriya veroyatn. i ee primen., 26:2 (1981), 225–245 | MR | Zbl
[3] T. V. Arak, A. Yu. Zaitsev, “Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin”, Tr. MIAN SSSR, 174, 1986 | MR | Zbl
[4] M. Campos, M. Jenssen, M. Michelen, J. Sahasrabudhe, “The singularity probability of a random symmetric matrix is exponentially small”, J. Amer. Math. Soc., 2024 (Published electronically: January 19, 2024) | MR
[5] M. Campos, M. Jenssen, M. Michelen, J. Sahasrabudhe, “The least singular value of a random symmetric matrix”, Forum of Mathematics, Pi, Cambridge University Press, 2024 (Published online by 23 January, 2024) | MR
[6] Yu. S. Eliseeva, “Mnogomernye otsenki funktsii kontsentratsii vzveshennykh summ nezavisimykh odinakovo raspredelennykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 412, 2013, 121–137
[7] Yu. S. Eliseeva, A. Yu. Zaitsev, “Otsenki funktsii kontsentratsii vzveshennykh summ nezavisimykh odinakovo raspredelennykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 57:4 (2012), 768–777 | DOI | MR
[8] Yu. S. Eliseeva, F. Gëttse, A. Yu. Zaitsev, “Otsenki funktsii kontsentratsii v probleme Littlvuda–Offorda”, Zap. nauchn. semin. POMI, 420, 2013, 50–69
[9] P. Erdös, “On a lemma of Littlewood and Offord”, Bull. Amer. Math. Soc., 51:12 (1945), 898–902 | DOI | MR | Zbl
[10] C.-G. Esséen, “On the Kolmogorov–Rogozin inequality for the concentration function”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 5 (1966), 210–216 | DOI | MR | Zbl
[11] C.-G. Esséen, “On the concentration function of a sum of independent random variables”, Z. Wahrscheinlichkeitstheorie Verw. Geb., 9 (1968), 290–308 | DOI | MR | Zbl
[12] O. Friedland, S. Sodin, “Bounds on the concentration function in terms of Diophantine approximation”, C. R. Math. Acad. Sci. Paris, 345 (2007), 513–518 | DOI | MR | Zbl
[13] F. Gëttse, Yu. S. Eliseeva, A. Yu. Zaitsev, “Neravenstva Araka dlya funktsii kontsentratsii i problema Littlvuda–Offorda”, Teoriya veroyatn. i ee primen., 62:2 (2017), 241–266 | DOI
[14] F. Götze, A. Yu. Zaitsev, “New applications of Arak's inequalities to the Littlewood–Offord problem”, Eur. J. Math., 4:2 (2018), 639–663 | DOI | MR | Zbl
[15] F. Götze, A. Yu. Zaitsev, “A new bound in the Littlewood–Offord problem”, Mathematics, 10:10 (2022), 1740 | DOI | MR
[16] B. Green, Notes on progressions and convex geometry, Preprint, 2005
[17] V. Khengartner, R. Teodoresku, Funktsii kontsentratsii, Nauka, M., 1980 | MR
[18] A. N. Kolmogorov, “Dve ravnomernye predelnye teoremy dlya summ nezavisimykh slagaemykh”, Teoriya veroyatn. i ee primen., 1:4 (1956), 384–394
[19] G. V. Livshyts, K. Tikhomirov, R. Vershynin, “The smallest singular value of inhomogeneous square random matrices”, Ann. Probab., 49 (2021), 1286–1309 | DOI | MR | Zbl
[20] J. E. Littlewood, A. C. Offord, “On the number of real roots of a random algebraic equation (III)”, Matem. sb., 12(54):3 (1943), 277–286 | MR | Zbl
[21] Hoi Nguyen, Van Vu, “Optimal inverse Littlewood–Offord theorems”, Adv. Math., 226:6 (2011), 5298–5319 | DOI | MR | Zbl
[22] Hoi Nguyen, Van Vu, “Small ball probabilities, inverse theorems and applications”, Erdös Centennial Proceeding, eds. Lovász L., et. al., Springer, 2013, 409–463 | MR | Zbl
[23] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987
[24] M. Rudelson, R. Vershynin, “The Littlewood–Offord problem and invertibility of random matrices”, Adv. Math., 218 (2008), 600–633 | DOI | MR | Zbl
[25] M. Rudelson, R. Vershynin, “The smallest singular value of a random rectangular matrix”, Comm. Pure Appl. Math., 62 (2009), 1707–1739 | DOI | MR | Zbl
[26] T. Tao, Van Vu, Additive Combinatorics, Cambridge Univ. Press, 2006 | MR | Zbl
[27] T. Tao, Van Vu, “John-type theorems for generalized arithmetic progressions and iterated sumsets”, Adv. Math., 219:2 (2008), 428–449 | DOI | MR | Zbl
[28] T. Tao, Van Vu, “Inverse Littlewood–Offord theorems and the condition number of random discrete matrices”, Ann. Math. (2), 169:2 (2009), 595–632 | DOI | MR | Zbl
[29] T. Tao, Van Vu, “From the Littlewood–Offord problem to the circular law: universality of the spectral distribution of random matrices”, Bull. Amer. Math. Soc., 46 (2009), 377–396 | DOI | MR | Zbl
[30] T. Tao, Van Vu, “A sharp inverse Littlewood–Offord theorem”, Random Structures Algorithms, 37:4 (2010), 525–539 | DOI | MR | Zbl
[31] K. Tikhomirov, “Singularity of random Bernoulli matrices”, Ann. Math. (2), 191:2 (2020), 593–634 | DOI | MR | Zbl
[32] R. Vershynin, “Invertibility of symmetric random matrices”, Random Structures Algorithms, 44 (2014), 135–182 | DOI | MR | Zbl
[33] A. Yu. Zaitsev, “Neravenstva Araka dlya obobschennykh arifmeticheskikh progressii”, Zap. nauchn. semin. POMI, 454, 2016, 151–157