On the asymptotic behaviour for increments of homogeneous processes with independent increments
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 32-39

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive new results on an asymptotic behaviour for increments and maximum of increments of homogeneous processes with independent increments from a domain of normal attraction of an asymmetric stable law with exponent from $(1,2)$. Similar result for a maximum of increments of independent random variables sums is obtained as well.
@article{ZNSL_2024_535_a2,
     author = {A. S. Bogarev},
     title = {On the asymptotic behaviour for increments of homogeneous processes with independent increments},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--39},
     publisher = {mathdoc},
     volume = {535},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a2/}
}
TY  - JOUR
AU  - A. S. Bogarev
TI  - On the asymptotic behaviour for increments of homogeneous processes with independent increments
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 32
EP  - 39
VL  - 535
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a2/
LA  - ru
ID  - ZNSL_2024_535_a2
ER  - 
%0 Journal Article
%A A. S. Bogarev
%T On the asymptotic behaviour for increments of homogeneous processes with independent increments
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 32-39
%V 535
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a2/
%G ru
%F ZNSL_2024_535_a2
A. S. Bogarev. On the asymptotic behaviour for increments of homogeneous processes with independent increments. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 32-39. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a2/