On convergence of distributions for sums of independent random vectors with randomly change of components
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 269-276
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We derive new results on convergence of distributions for sums of independent random vectors with randomly changed components in scheme of series. In particular, a multidimensional central limit theorem is proved. If the random change of components is defined by a Poisson process then we arrive at results on convergence of finitely dimension distributions of psi-processes. In Gaussian case, the limit process is the Ornstein–Uhlenbeck process. We discuss a replacement of the Poisson process by processes with non-negative integer increments.
			
            
            
            
          
        
      @article{ZNSL_2024_535_a17,
     author = {A. N. Frolov},
     title = {On convergence of distributions for sums of independent random vectors with randomly change of components},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {269--276},
     publisher = {mathdoc},
     volume = {535},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a17/}
}
                      
                      
                    TY - JOUR AU - A. N. Frolov TI - On convergence of distributions for sums of independent random vectors with randomly change of components JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 269 EP - 276 VL - 535 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a17/ LA - ru ID - ZNSL_2024_535_a17 ER -
A. N. Frolov. On convergence of distributions for sums of independent random vectors with randomly change of components. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 269-276. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a17/