Approximation of spectral density and accuracy in the estimation problem
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 255-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we construct lower and upper bounds for minimax risk in the problem of estimating the unknown pseudo-periodic function observed in the stationary noise with a spectral density satisfying the Muckenhoupt condition, with some a priori information about the behavior of the spectral density in the neighborhood of the spectrum of the signal.
@article{ZNSL_2024_535_a16,
     author = {V. N. Solev},
     title = {Approximation of spectral density and accuracy in the estimation problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {255--268},
     year = {2024},
     volume = {535},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a16/}
}
TY  - JOUR
AU  - V. N. Solev
TI  - Approximation of spectral density and accuracy in the estimation problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 255
EP  - 268
VL  - 535
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a16/
LA  - ru
ID  - ZNSL_2024_535_a16
ER  - 
%0 Journal Article
%A V. N. Solev
%T Approximation of spectral density and accuracy in the estimation problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 255-268
%V 535
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a16/
%G ru
%F ZNSL_2024_535_a16
V. N. Solev. Approximation of spectral density and accuracy in the estimation problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 255-268. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a16/

[1] Yu. A. Rozanov, Statsionarnye protsessy, Mir, M., 1963

[2] I. A. Ibragimov, Yu. A. Rozanov, Gaussovskie protsessy, Mir, M., 1974

[3] I. A. Ibragimov, R. Z. Khasminskii, “O neparametricheskom otsenivanii znacheniya lineinogo funktsionala v gaussovskom belom shume”, Teoriya veroyatn. i ee primen., 29:1 (1984), 19–32 | MR | Zbl

[4] V. N. Solev, “Adaptivnaya otsenka funktsii, nablyudaemoi na fone gaussovskogo statsionarnogo shuma”, Zap. nauchn. semin. POMI, 454, 2016, 261–275

[5] V. N. Solev, “Otsenka funktsii v gaussovskom statsionarnom shume”, Zap. nauchn. semin. POMI, 495, 2020, 277–290

[6] V. N. Solev, “Otsenka funktsii v gaussovskom statsionarnom shume: novye spektralnye usloviya”, Zap. nauchn. semin. POMI, 486, 2018, 275–285

[7] V. N. Solev, “Otsenka snizu minimaksnogo riska v odnoi zadache otsenivaniya funktsii v statsionarnom gaussovskom shume”, Zap. nauchn. semin. POMI, 505, 2021, 282–293

[8] V. N. Solev, “Prostranstvo BMO i zadacha otsenivaniya funktsii, nablyudaemoi na fone gaussovskogo statsionarnogo shuma”, Zap. nauchn. semin. POMI, 526, 2023, 193–206

[9] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi ploskosti, Nauka, M., 1964

[10] D. L. Donoho, R. C. Liu, B. MacGibbon, “Minimax risk over hyperrectangles, and implications”, Ann. Statist., 18:3 (1990), 1416–1437 | DOI | MR | Zbl

[11] W. Stepanoff, “Sur quelques généralisations des fonctions presque-périodiques”, C. R. Acad. Sci., Paris, 181 (1925), 90–92 | MR

[12] J. B. Garnett, Bounded Analytic Functions, Academic Press, N. Y., 1981 | MR | Zbl

[13] I. M. Johnstone, Gaussian Estimation: Sequence and Wavelet Models, Book draft, 2017 http://statweb.stanford.edu

[14] M. Ermakov, “Minimax and Bayes estimation in deconvolution problem”, ESAIM: Probab. Statist., 12 (2008), 327–344 | DOI | MR | Zbl

[15] V. N. Solev, “Uslovie lokalnoi asimptoticheskoi normalnosti dlya gaussovskikh statsionarnykh protsessov”, Zap. nauchn. semin. POMI, 278, 2001, 225–247 | Zbl

[16] V. N. Solev, “Otsenka funktsii, nablyudaemoi na fone statsionarnogo shuma: diskretizatsiya”, Zap. nauchn. semin. POMI, 441, 2015, 286–298