@article{ZNSL_2024_535_a15,
author = {N. V. Smorodina and E. B. Yarovaya},
title = {Limit theorem for non homogeneous by space random walks with branching of particles},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {237--254},
year = {2024},
volume = {535},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a15/}
}
TY - JOUR AU - N. V. Smorodina AU - E. B. Yarovaya TI - Limit theorem for non homogeneous by space random walks with branching of particles JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 237 EP - 254 VL - 535 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a15/ LA - ru ID - ZNSL_2024_535_a15 ER -
N. V. Smorodina; E. B. Yarovaya. Limit theorem for non homogeneous by space random walks with branching of particles. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 237-254. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a15/
[1] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo Tsentra prikl. issled. pri mekh.-matem. f-te MGU, M., 2007
[2] Ya. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaĭkin, D. D. Sokolov, “Intermittency, diffusion and generation in a nonstationary random medium”, Sov. Sci. Rev., Sect. C, Math. Phys. Rev., 7 (1988), 1–110 | MR | Zbl
[3] J. Gärtner, S. A. Molchanov, “Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks”, Probab. Theory Relat. Fields, 111:1 (1998), 17–55 | DOI | MR
[4] M. Cranston, L. Koralov, S. Molchanov, B. Vainberg, “Continuous model for homopolymers”, J. Funct. Anal., 256:8 (2009), 2656–2696 | DOI | MR | Zbl
[5] Iu. Makarova, D. Balashova, S. Molchanov, E. Yarovaya, “Branching random walks with two types of particles on multidimensional lattices”, Mathematics, 10:6 (2022), 1–46 | DOI
[6] N. V. Smorodina, E. B. Yarovaya, “Martingalnyi metod issledovaniya vetvyaschikhsya sluchainykh bluzhdanii”, Uspekhi matem. nauk, 5 (2022), 223–224
[7] N. V. Smorodina, E. B. Yarovaya, “Ob odnoi predelnoi teoreme dlya vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 68:4 (2023), 779–795 | DOI | MR
[8] Dzh. D. Biggins, “Skhodimost martingalov i bolshie ukloneniya v vetvyaschemsya sluchainom bluzhdanii”, Teoriya veroyatn. i ee primen., 37:2 (1992), 301–306 | MR
[9] A. Ioffe, “A new martingale in branching random walk”, Ann. Appl. Probab., 3:4 (1993), 1145–1150 | MR
[10] P. R. Halmos, V. S. Sunder, Bounded Integral Operators on $L_2$-spaces, Springer Science $\$ Business Media, 96, 2012 | MR
[11] P. Major, Multiple Wiener–Ito Integrals. With Applications to Limit Theorems, Lecture Notes Math., 849, Springer, Berlin–Heidelberg–New York, 2014 | DOI | MR | Zbl
[12] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR
[13] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, SPb.–M.–Krasnodar, 2010
[14] K.-Ch. Chang, X. Wang, X. Wu, “On the spectral theory of positive operators and PDE applications”, Discrete Contin. Dyn. Syst., 40:6 (2020), 3171–3200 | DOI | MR | Zbl
[15] P. P. Zabreiko, S. V. Smitskikh, “Ob odnoi teoreme M. G. Kreina–M. A. Rutmana”, Funkts. analiz i ego pril., 13:3 (1979), 81–82 | MR | Zbl
[16] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR