Limit theorem for non homogeneous by space random walks with branching of particles
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 237-254
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a symmetric, irreducible, continuous-time random walk (a Markov process) on the lattice $\mathbb{Z}^d$, $d\in \mathbb{N}$, with the possibility of particle branching at any lattice point. The evolution of the process starts from a single particle. Unlike previous works of the authors, the proof of the limit theorem on mean squared convergence of the normalized number of particles at an arbitrary fixed point of the lattice (at $t\rightarrow\infty$) fixed point of the lattice (at $t\rightarrow\infty$) is carried out without an additional assumption on spatial homogeneity of the random walk.
@article{ZNSL_2024_535_a15,
author = {N. V. Smorodina and E. B. Yarovaya},
title = {Limit theorem for non homogeneous by space random walks with branching of particles},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {237--254},
publisher = {mathdoc},
volume = {535},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a15/}
}
TY - JOUR AU - N. V. Smorodina AU - E. B. Yarovaya TI - Limit theorem for non homogeneous by space random walks with branching of particles JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 237 EP - 254 VL - 535 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a15/ LA - ru ID - ZNSL_2024_535_a15 ER -
N. V. Smorodina; E. B. Yarovaya. Limit theorem for non homogeneous by space random walks with branching of particles. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 237-254. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a15/