Limit theorem for non homogeneous by space random walks with branching of particles
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 237-254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a symmetric, irreducible, continuous-time random walk (a Markov process) on the lattice $\mathbb{Z}^d$, $d\in \mathbb{N}$, with the possibility of particle branching at any lattice point. The evolution of the process starts from a single particle. Unlike previous works of the authors, the proof of the limit theorem on mean squared convergence of the normalized number of particles at an arbitrary fixed point of the lattice (at $t\rightarrow\infty$) fixed point of the lattice (at $t\rightarrow\infty$) is carried out without an additional assumption on spatial homogeneity of the random walk.
@article{ZNSL_2024_535_a15,
     author = {N. V. Smorodina and E. B. Yarovaya},
     title = {Limit theorem for non homogeneous by space random walks with branching of particles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {237--254},
     year = {2024},
     volume = {535},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a15/}
}
TY  - JOUR
AU  - N. V. Smorodina
AU  - E. B. Yarovaya
TI  - Limit theorem for non homogeneous by space random walks with branching of particles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 237
EP  - 254
VL  - 535
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a15/
LA  - ru
ID  - ZNSL_2024_535_a15
ER  - 
%0 Journal Article
%A N. V. Smorodina
%A E. B. Yarovaya
%T Limit theorem for non homogeneous by space random walks with branching of particles
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 237-254
%V 535
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a15/
%G ru
%F ZNSL_2024_535_a15
N. V. Smorodina; E. B. Yarovaya. Limit theorem for non homogeneous by space random walks with branching of particles. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 237-254. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a15/

[1] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo Tsentra prikl. issled. pri mekh.-matem. f-te MGU, M., 2007

[2] Ya. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaĭkin, D. D. Sokolov, “Intermittency, diffusion and generation in a nonstationary random medium”, Sov. Sci. Rev., Sect. C, Math. Phys. Rev., 7 (1988), 1–110 | MR | Zbl

[3] J. Gärtner, S. A. Molchanov, “Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks”, Probab. Theory Relat. Fields, 111:1 (1998), 17–55 | DOI | MR

[4] M. Cranston, L. Koralov, S. Molchanov, B. Vainberg, “Continuous model for homopolymers”, J. Funct. Anal., 256:8 (2009), 2656–2696 | DOI | MR | Zbl

[5] Iu. Makarova, D. Balashova, S. Molchanov, E. Yarovaya, “Branching random walks with two types of particles on multidimensional lattices”, Mathematics, 10:6 (2022), 1–46 | DOI

[6] N. V. Smorodina, E. B. Yarovaya, “Martingalnyi metod issledovaniya vetvyaschikhsya sluchainykh bluzhdanii”, Uspekhi matem. nauk, 5 (2022), 223–224

[7] N. V. Smorodina, E. B. Yarovaya, “Ob odnoi predelnoi teoreme dlya vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 68:4 (2023), 779–795 | DOI | MR

[8] Dzh. D. Biggins, “Skhodimost martingalov i bolshie ukloneniya v vetvyaschemsya sluchainom bluzhdanii”, Teoriya veroyatn. i ee primen., 37:2 (1992), 301–306 | MR

[9] A. Ioffe, “A new martingale in branching random walk”, Ann. Appl. Probab., 3:4 (1993), 1145–1150 | MR

[10] P. R. Halmos, V. S. Sunder, Bounded Integral Operators on $L_2$-spaces, Springer Science $\$ Business Media, 96, 2012 | MR

[11] P. Major, Multiple Wiener–Ito Integrals. With Applications to Limit Theorems, Lecture Notes Math., 849, Springer, Berlin–Heidelberg–New York, 2014 | DOI | MR | Zbl

[12] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR

[13] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, SPb.–M.–Krasnodar, 2010

[14] K.-Ch. Chang, X. Wang, X. Wu, “On the spectral theory of positive operators and PDE applications”, Discrete Contin. Dyn. Syst., 40:6 (2020), 3171–3200 | DOI | MR | Zbl

[15] P. P. Zabreiko, S. V. Smitskikh, “Ob odnoi teoreme M. G. Kreina–M. A. Rutmana”, Funkts. analiz i ego pril., 13:3 (1979), 81–82 | MR | Zbl

[16] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR