Branching diffusion processes in periodic media
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 214-236

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider branching diffusion processes in $\mathbf R^d$ in periodic media. The movement of particles in $\mathbf R^d$ is described by a stochastic differential equation with periodic coefficients. We study the asymptotic behavior of the mean number of particles in an arbitrary bounded set as $t\to\infty$. In the case when an initial configuration cosists of one particle at a point $x\in\mathbf R^d$ we obtain the answer for $d\leqslant 3$. In the case when an initial configuration is random and has a density with a compact support the answer is obtained for any $d$.
@article{ZNSL_2024_535_a14,
     author = {M. V. Platonova and K. S. Ryadovkin},
     title = {Branching diffusion processes in periodic media},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {214--236},
     publisher = {mathdoc},
     volume = {535},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a14/}
}
TY  - JOUR
AU  - M. V. Platonova
AU  - K. S. Ryadovkin
TI  - Branching diffusion processes in periodic media
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 214
EP  - 236
VL  - 535
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a14/
LA  - ru
ID  - ZNSL_2024_535_a14
ER  - 
%0 Journal Article
%A M. V. Platonova
%A K. S. Ryadovkin
%T Branching diffusion processes in periodic media
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 214-236
%V 535
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a14/
%G ru
%F ZNSL_2024_535_a14
M. V. Platonova; K. S. Ryadovkin. Branching diffusion processes in periodic media. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 214-236. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a14/