Branching diffusion processes in periodic media
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 214-236
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider branching diffusion processes in $\mathbf R^d$ in periodic media. The movement of particles in $\mathbf R^d$ is described by a stochastic differential equation with periodic coefficients. We study the asymptotic behavior of the mean number of particles in an arbitrary bounded set as $t\to\infty$. In the case when an initial configuration cosists of one particle at a point $x\in\mathbf R^d$ we obtain the answer for $d\leqslant 3$. In the case when an initial configuration is random and has a density with a compact support the answer is obtained for any $d$.
			
            
            
            
          
        
      @article{ZNSL_2024_535_a14,
     author = {M. V. Platonova and K. S. Ryadovkin},
     title = {Branching diffusion processes in periodic media},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {214--236},
     publisher = {mathdoc},
     volume = {535},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a14/}
}
                      
                      
                    M. V. Platonova; K. S. Ryadovkin. Branching diffusion processes in periodic media. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 214-236. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a14/