Branching diffusion processes in periodic media
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 214-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider branching diffusion processes in $\mathbf R^d$ in periodic media. The movement of particles in $\mathbf R^d$ is described by a stochastic differential equation with periodic coefficients. We study the asymptotic behavior of the mean number of particles in an arbitrary bounded set as $t\to\infty$. In the case when an initial configuration cosists of one particle at a point $x\in\mathbf R^d$ we obtain the answer for $d\leqslant 3$. In the case when an initial configuration is random and has a density with a compact support the answer is obtained for any $d$.
@article{ZNSL_2024_535_a14,
     author = {M. V. Platonova and K. S. Ryadovkin},
     title = {Branching diffusion processes in periodic media},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {214--236},
     year = {2024},
     volume = {535},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a14/}
}
TY  - JOUR
AU  - M. V. Platonova
AU  - K. S. Ryadovkin
TI  - Branching diffusion processes in periodic media
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 214
EP  - 236
VL  - 535
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a14/
LA  - ru
ID  - ZNSL_2024_535_a14
ER  - 
%0 Journal Article
%A M. V. Platonova
%A K. S. Ryadovkin
%T Branching diffusion processes in periodic media
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 214-236
%V 535
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a14/
%G ru
%F ZNSL_2024_535_a14
M. V. Platonova; K. S. Ryadovkin. Branching diffusion processes in periodic media. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 214-236. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a14/

[1] M. Sh. Birman, T. A. Suslina, “Two-dimensional periodic Pauli operator. The effective masses at the lower edge of the spectrum”, Oper. Theory Adv. Appl., 108 (1999), 13–31 | MR | Zbl

[2] J. Engländer, S. C. Harris, A. E. Kyprianou, “Strong law of large numbers for branching diffusions”, Ann. Inst. H. Poincaré. Probab., Statist., 46:1 (2010), 279–298 | MR | Zbl

[3] P. Hebbar, L. Koralov, J. Nolen, “Asymptotic behavior of branching diffusion processes in periodic media”, Electron. J. Probab., 25 (2020), 126, 40 pp. | DOI | MR | Zbl

[4] N. Ikeda, K. Kawazu, Y. Ogura, “Branching one-dimensional periodic diffusion processes”, Stoch. Processes Appl., 19:1 (1985), 63–83 | DOI | MR | Zbl

[5] W. Kirsch, B. Simon, “Comparison theorems for the gap of Schrödinger operators”, J. Funct. Anal., 75:2 (1987), 396–410 | DOI | MR | Zbl

[6] L. Koralov, “Branching diffusion in inhomogeneous media”, Asymptot. Anal., 81:3–4 (2013), 357–377 | MR | Zbl

[7] L. Koralov, S. Molchanov, “Structure of population inside propagating front”, J. Math. Sci., 189 (2013), 637–658 | DOI | MR | Zbl

[8] M. Reed, B. Simon, Methods of Modern Mathematical Phisics, v. IV, Analysis of Operators, Elsevier, 1978 | MR

[9] E. B. Yarovaya, “Operator equations of branching random walks”, Methodol. Comput. Appl. Probab., 21 (2019), 1007–1021 | DOI | MR | Zbl

[10] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108

[11] V. V. Zhikov, S. E. Pastukhova, “Asimptotika fundamentalnogo resheniya dlya uravneniya diffuzii v periodicheskoi srede na bolshikh vremenakh i ee primenenie k otsenkam teorii usredneniya”, Sovrem. matem. Fundam. napravl., 63, no. 2, 2017, 223–246 | MR

[12] A. D. Venttsel, Kurs teorii sluchainykh protsessov, Nauka, M., 1996

[13] B. Z. Vulikh, N. N. Uraltseva, D. K. Faddeev, Izbrannye glavy analiza i vysshei algebry, Izd.-vo LGU, L., 1981

[14] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[15] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[16] O. A. Ladyzhenskaya, V. A. Sollonikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[17] M. V. Platonova, K. S. Ryadovkin, “Vetvyaschiesya sluchainye bluzhdaniya na $\mathbf{Z}^d$ s periodicheski raspolozhennymi istochnikami vetvleniya”, Teoriya veroyatn. i ee primen., 64:2 (2019), 283–307 | DOI | MR | Zbl

[18] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971

[19] N. V. Smorodina, E. B. Yarovaya, “Ob odnoi predelnoi teoreme dlya vetvyaschikhsya sluchainykh bluzhdanii”, Uspekhi matem. nauk, 77 (2022), 193–194 | DOI | MR | Zbl

[20] M. V. Fedoryuk, Metod perevala, Nauka, 1977

[21] I. I. Khristolyubov, E. B. Yarovaya, “Predelnaya teorema dlya nadkriticheskogo vetvyaschegosya bluzhdaniya s istochnikami razlichnoi intensivnosti”, Teoriya veroyatn. i ee primen., 64:3 (2019), 456–480 | DOI | MR | Zbl

[22] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, TsPI pri mekhmate Mosk. un-ta, 2007