@article{ZNSL_2024_535_a14,
author = {M. V. Platonova and K. S. Ryadovkin},
title = {Branching diffusion processes in periodic media},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {214--236},
year = {2024},
volume = {535},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a14/}
}
M. V. Platonova; K. S. Ryadovkin. Branching diffusion processes in periodic media. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 214-236. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a14/
[1] M. Sh. Birman, T. A. Suslina, “Two-dimensional periodic Pauli operator. The effective masses at the lower edge of the spectrum”, Oper. Theory Adv. Appl., 108 (1999), 13–31 | MR | Zbl
[2] J. Engländer, S. C. Harris, A. E. Kyprianou, “Strong law of large numbers for branching diffusions”, Ann. Inst. H. Poincaré. Probab., Statist., 46:1 (2010), 279–298 | MR | Zbl
[3] P. Hebbar, L. Koralov, J. Nolen, “Asymptotic behavior of branching diffusion processes in periodic media”, Electron. J. Probab., 25 (2020), 126, 40 pp. | DOI | MR | Zbl
[4] N. Ikeda, K. Kawazu, Y. Ogura, “Branching one-dimensional periodic diffusion processes”, Stoch. Processes Appl., 19:1 (1985), 63–83 | DOI | MR | Zbl
[5] W. Kirsch, B. Simon, “Comparison theorems for the gap of Schrödinger operators”, J. Funct. Anal., 75:2 (1987), 396–410 | DOI | MR | Zbl
[6] L. Koralov, “Branching diffusion in inhomogeneous media”, Asymptot. Anal., 81:3–4 (2013), 357–377 | MR | Zbl
[7] L. Koralov, S. Molchanov, “Structure of population inside propagating front”, J. Math. Sci., 189 (2013), 637–658 | DOI | MR | Zbl
[8] M. Reed, B. Simon, Methods of Modern Mathematical Phisics, v. IV, Analysis of Operators, Elsevier, 1978 | MR
[9] E. B. Yarovaya, “Operator equations of branching random walks”, Methodol. Comput. Appl. Probab., 21 (2019), 1007–1021 | DOI | MR | Zbl
[10] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108
[11] V. V. Zhikov, S. E. Pastukhova, “Asimptotika fundamentalnogo resheniya dlya uravneniya diffuzii v periodicheskoi srede na bolshikh vremenakh i ee primenenie k otsenkam teorii usredneniya”, Sovrem. matem. Fundam. napravl., 63, no. 2, 2017, 223–246 | MR
[12] A. D. Venttsel, Kurs teorii sluchainykh protsessov, Nauka, M., 1996
[13] B. Z. Vulikh, N. N. Uraltseva, D. K. Faddeev, Izbrannye glavy analiza i vysshei algebry, Izd.-vo LGU, L., 1981
[14] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR
[15] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[16] O. A. Ladyzhenskaya, V. A. Sollonikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[17] M. V. Platonova, K. S. Ryadovkin, “Vetvyaschiesya sluchainye bluzhdaniya na $\mathbf{Z}^d$ s periodicheski raspolozhennymi istochnikami vetvleniya”, Teoriya veroyatn. i ee primen., 64:2 (2019), 283–307 | DOI | MR | Zbl
[18] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971
[19] N. V. Smorodina, E. B. Yarovaya, “Ob odnoi predelnoi teoreme dlya vetvyaschikhsya sluchainykh bluzhdanii”, Uspekhi matem. nauk, 77 (2022), 193–194 | DOI | MR | Zbl
[20] M. V. Fedoryuk, Metod perevala, Nauka, 1977
[21] I. I. Khristolyubov, E. B. Yarovaya, “Predelnaya teorema dlya nadkriticheskogo vetvyaschegosya bluzhdaniya s istochnikami razlichnoi intensivnosti”, Teoriya veroyatn. i ee primen., 64:3 (2019), 456–480 | DOI | MR | Zbl
[22] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, TsPI pri mekhmate Mosk. un-ta, 2007