A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 200-213
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a probabilistic approximation of the Cauchy problem solution for an evolution equation containing a sixth-order differential operator with a variable coefficient on the right side by mathematical expectations of functionals of a random process.
@article{ZNSL_2024_535_a13,
author = {M. V. Platonova},
title = {A probabilistic approximation of the {Cauchy} problem solution for a certain class of evolution equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {200--213},
publisher = {mathdoc},
volume = {535},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a13/}
}
TY - JOUR AU - M. V. Platonova TI - A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 200 EP - 213 VL - 535 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a13/ LA - ru ID - ZNSL_2024_535_a13 ER -
M. V. Platonova. A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 200-213. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a13/