A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 200-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct a probabilistic approximation of the Cauchy problem solution for an evolution equation containing a sixth-order differential operator with a variable coefficient on the right side by mathematical expectations of functionals of a random process.
@article{ZNSL_2024_535_a13,
     author = {M. V. Platonova},
     title = {A probabilistic approximation of the {Cauchy} problem solution for a certain class of evolution equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {200--213},
     year = {2024},
     volume = {535},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a13/}
}
TY  - JOUR
AU  - M. V. Platonova
TI  - A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 200
EP  - 213
VL  - 535
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a13/
LA  - ru
ID  - ZNSL_2024_535_a13
ER  - 
%0 Journal Article
%A M. V. Platonova
%T A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 200-213
%V 535
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a13/
%G ru
%F ZNSL_2024_535_a13
M. V. Platonova. A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 200-213. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a13/

[1] L. de Branges, Hilbert Spaces of Entire Functions, Prentice-Hall, Englewood Cliffs, 1968 | MR | Zbl

[2] K. Hochberg, “A signed measure on path space related to Wiener measure”, Ann. Probab., 6:3 (1978), 433–458 | DOI | MR | Zbl

[3] V. Yu. Krylov, “O nekotorykh svoistvakh raspredeleniya, otvechayuschego uravneniyu $\partial u/\partial t = (-1)^{q+1}\partial^{2q}u/\partial x^{2q}$”, Dokl. AN SSSR, 132:6 (1960), 1254–1257 | Zbl

[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Analiticheskie diffuzionnye protsessy: opredelenie, svoistva, predelnye teoremy”, Teoriya veroyatn. i ee primen., 61:2 (2016), 300–326 | DOI

[5] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[6] M. V. Platonova, “Veroyatnostnoe predstavlenie resheniya zadachi Koshi dlya evolyutsionnogo uravneniya s operatorom differentsirovaniya vysokogo poryadka”, Zap. nauchn. semin. POMI, 454, 2016, 92–106

[7] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[8] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v funktsionalnykh prostranstvakh, Nauka, M., 1983

[9] D. K. Faddeev, B. Z. Vulikh, N. N. Uraltseva, Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningr. un-ta, L., 1981