A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 200-213

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a probabilistic approximation of the Cauchy problem solution for an evolution equation containing a sixth-order differential operator with a variable coefficient on the right side by mathematical expectations of functionals of a random process.
@article{ZNSL_2024_535_a13,
     author = {M. V. Platonova},
     title = {A probabilistic approximation of the {Cauchy} problem solution for a certain class of evolution equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {200--213},
     publisher = {mathdoc},
     volume = {535},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a13/}
}
TY  - JOUR
AU  - M. V. Platonova
TI  - A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 200
EP  - 213
VL  - 535
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a13/
LA  - ru
ID  - ZNSL_2024_535_a13
ER  - 
%0 Journal Article
%A M. V. Platonova
%T A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 200-213
%V 535
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a13/
%G ru
%F ZNSL_2024_535_a13
M. V. Platonova. A probabilistic approximation of the Cauchy problem solution for a certain class of evolution equations. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 200-213. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a13/