@article{ZNSL_2024_535_a12,
author = {T. D. Moseeva},
title = {Mixed random beta-polytopes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {189--199},
year = {2024},
volume = {535},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a12/}
}
T. D. Moseeva. Mixed random beta-polytopes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 189-199. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a12/
[1] J. Grote, Z. Kabluchko, Ch. Thäle, “Limit theorems for random simplices in high dimensions”, ALEA, Lat. Am. J. Probab. Math. Statist., 16 (2019), 141–177 | DOI | MR | Zbl
[2] Z. Kabluchko, D. Temesvari, Ch. Thäle, “Expected intrinsic volumes and facet numbers of random beta-polytopes”, Math. Nachr., 292:1 (2019), 79–105 | DOI | MR | Zbl
[3] Z. Kabluchko, Ch. Thäle, D. Zaporozhets, “Beta polytopes and Poisson polyhedra: f-vectors and angles”, Adv. Math., 374 (2020), 107333 | DOI | MR | Zbl
[4] J. Kingman, “Random secants of a convex body”, J. Appl. Probab., 6:3 (1969), 660–672 | DOI | MR | Zbl
[5] R. E. Miles, “Isotropic random simplices”, Adv. Appl. Probab., 3 (1971), 353–382 | DOI | MR | Zbl
[6] H. Ruben, R. E. Miles, “A canonical decomposition of the probability measure of sets of isotropic random points in $\mathbb{R}^n$”, J. Multivariate Anal., 10 (1980), 1–18 | DOI | MR | Zbl
[7] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probability and its Applications (New York), Springer, Berlin, 2008 | DOI | MR | Zbl
[8] J. A. Wieacker, Einige probleme der polyedrischen Approximation, Diplomarbeit, Freiburg im Breisgau, 1978