Mixed random beta-polytopes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 189-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we generalize the result on the average volume of random polytopes with vertices following beta distributions to the case of non-identically distributed vectors. Specifically,we consider the convex hull of independent random vectors in $\mathbb{R}^d$, where each vector follows a beta distribution with potentially different parameters. We derive an expression for the expected volume of these generalized beta–polytopes. Additionally, we compute the expected value of a functional introduced by Wieacker, which involves the distance of facets from the origin and their volumes. Our results extend those of Kabluchko, Temesvari, and Thäle. Key techniques used in the proofs include the Blaschke–Petkantschin formula, \break Kubota's formula, and projections of beta distributed random vectors.
@article{ZNSL_2024_535_a12,
     author = {T. D. Moseeva},
     title = {Mixed random beta-polytopes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {189--199},
     year = {2024},
     volume = {535},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a12/}
}
TY  - JOUR
AU  - T. D. Moseeva
TI  - Mixed random beta-polytopes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 189
EP  - 199
VL  - 535
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a12/
LA  - ru
ID  - ZNSL_2024_535_a12
ER  - 
%0 Journal Article
%A T. D. Moseeva
%T Mixed random beta-polytopes
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 189-199
%V 535
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a12/
%G ru
%F ZNSL_2024_535_a12
T. D. Moseeva. Mixed random beta-polytopes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 189-199. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a12/

[1] J. Grote, Z. Kabluchko, Ch. Thäle, “Limit theorems for random simplices in high dimensions”, ALEA, Lat. Am. J. Probab. Math. Statist., 16 (2019), 141–177 | DOI | MR | Zbl

[2] Z. Kabluchko, D. Temesvari, Ch. Thäle, “Expected intrinsic volumes and facet numbers of random beta-polytopes”, Math. Nachr., 292:1 (2019), 79–105 | DOI | MR | Zbl

[3] Z. Kabluchko, Ch. Thäle, D. Zaporozhets, “Beta polytopes and Poisson polyhedra: f-vectors and angles”, Adv. Math., 374 (2020), 107333 | DOI | MR | Zbl

[4] J. Kingman, “Random secants of a convex body”, J. Appl. Probab., 6:3 (1969), 660–672 | DOI | MR | Zbl

[5] R. E. Miles, “Isotropic random simplices”, Adv. Appl. Probab., 3 (1971), 353–382 | DOI | MR | Zbl

[6] H. Ruben, R. E. Miles, “A canonical decomposition of the probability measure of sets of isotropic random points in $\mathbb{R}^n$”, J. Multivariate Anal., 10 (1980), 1–18 | DOI | MR | Zbl

[7] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probability and its Applications (New York), Springer, Berlin, 2008 | DOI | MR | Zbl

[8] J. A. Wieacker, Einige probleme der polyedrischen Approximation, Diplomarbeit, Freiburg im Breisgau, 1978