Jacobi branching random walks corresponding to orthogonal polynomials of discrete variable
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 173-188
Voir la notice de l'article provenant de la source Math-Net.Ru
A branching random walk on $\mathbf{Z}_+$ is considered, which corresponds to a Jacobi matrix. Previously, formulas for the average number of particles at an arbitrary fixed point in $\mathbf{Z}_+$ at time $t>0$ were obtained in terms of the orthogonal polynomials associated with this matrix. In the present work, the application of the obtained results to certain models involving orthogonal polynomials of a discrete variable (Krawtchouk, Meixner, and Poisson–Charlier polynomials) is discussed.
@article{ZNSL_2024_535_a11,
author = {A. V. Lyulintsev},
title = {Jacobi branching random walks corresponding to orthogonal polynomials of discrete variable},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {173--188},
publisher = {mathdoc},
volume = {535},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a11/}
}
TY - JOUR AU - A. V. Lyulintsev TI - Jacobi branching random walks corresponding to orthogonal polynomials of discrete variable JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 173 EP - 188 VL - 535 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a11/ LA - ru ID - ZNSL_2024_535_a11 ER -
A. V. Lyulintsev. Jacobi branching random walks corresponding to orthogonal polynomials of discrete variable. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 173-188. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a11/