Jacobi branching random walks corresponding to orthogonal polynomials of discrete variable
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 173-188

Voir la notice de l'article provenant de la source Math-Net.Ru

A branching random walk on $\mathbf{Z}_+$ is considered, which corresponds to a Jacobi matrix. Previously, formulas for the average number of particles at an arbitrary fixed point in $\mathbf{Z}_+$ at time $t>0$ were obtained in terms of the orthogonal polynomials associated with this matrix. In the present work, the application of the obtained results to certain models involving orthogonal polynomials of a discrete variable (Krawtchouk, Meixner, and Poisson–Charlier polynomials) is discussed.
@article{ZNSL_2024_535_a11,
     author = {A. V. Lyulintsev},
     title = {Jacobi branching random walks corresponding to orthogonal polynomials of discrete variable},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {173--188},
     publisher = {mathdoc},
     volume = {535},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a11/}
}
TY  - JOUR
AU  - A. V. Lyulintsev
TI  - Jacobi branching random walks corresponding to orthogonal polynomials of discrete variable
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 173
EP  - 188
VL  - 535
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a11/
LA  - ru
ID  - ZNSL_2024_535_a11
ER  - 
%0 Journal Article
%A A. V. Lyulintsev
%T Jacobi branching random walks corresponding to orthogonal polynomials of discrete variable
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 173-188
%V 535
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a11/
%G ru
%F ZNSL_2024_535_a11
A. V. Lyulintsev. Jacobi branching random walks corresponding to orthogonal polynomials of discrete variable. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 173-188. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a11/