Probabilistic approach to analysis of information complexity of concret multivariate approximation problem
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 150-172
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Information complexity in the worst-case setting of multivariate approximation problem of functions from reproducing kernel Hilbert space with Gaussian kernel is considered. In the paper we obtain an upper estimate of information complexity for arbitrary error threshold and parametric dimension via probabilistic methods. The main result refines the logarithmic asymptotics of Khartov and Limar and complements the estimates by Fasshauer, Hickernell, and Woźniakowski.
			
            
            
            
          
        
      @article{ZNSL_2024_535_a10,
     author = {I. A. Limar},
     title = {Probabilistic approach to analysis of information complexity of concret multivariate approximation problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {150--172},
     publisher = {mathdoc},
     volume = {535},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a10/}
}
                      
                      
                    TY - JOUR AU - I. A. Limar TI - Probabilistic approach to analysis of information complexity of concret multivariate approximation problem JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 150 EP - 172 VL - 535 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a10/ LA - ru ID - ZNSL_2024_535_a10 ER -
I. A. Limar. Probabilistic approach to analysis of information complexity of concret multivariate approximation problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 150-172. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a10/