@article{ZNSL_2024_535_a10,
author = {I. A. Limar},
title = {Probabilistic approach to analysis of information complexity of concret multivariate approximation problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {150--172},
year = {2024},
volume = {535},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a10/}
}
TY - JOUR AU - I. A. Limar TI - Probabilistic approach to analysis of information complexity of concret multivariate approximation problem JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 150 EP - 172 VL - 535 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a10/ LA - ru ID - ZNSL_2024_535_a10 ER -
I. A. Limar. Probabilistic approach to analysis of information complexity of concret multivariate approximation problem. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 150-172. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a10/
[1] N. Aronszajn, “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68 (1950), 337–404 | DOI | MR | Zbl
[2] J. Chen, H. Wang, “Average case tractability of multivariate approximation with Gaussian kernels”, J. Approx. Theory, 239 (2019), 51–71 | DOI | MR | Zbl
[3] C.-G. Esseen, “A moment inequality with an application to the central limit theorem”, Scand. Aktuarietidskr. J., 39 (1956), 160–170 | DOI | MR
[4] G. E. Fasshauer, F. J. Hickernell, H. Woźniakowski, “Average case approximation: convergence and tractability of Gaussian kernels”, Monte Carlo and Quasi-Monte Carlo 2010, eds. L. Plaskota, H. Woźniakowski, Springer, 2012, 329–345 | DOI | MR
[5] G. E. Fasshauer, F. J. Hickernell, H. Woźniakowski, “On dimension-independent rates of convergence for function approximation with Gaussian kernels”, SIAM J. Numer. Analysis, 50 (2012), 247–271 | DOI | MR | Zbl
[6] A. I. J. Forrester, A. Sóbester, A. J. Keane, Engineering Design via Surrogate Modelling: a Practical Guide, Wiley, Chichester, 2008
[7] T. Hastie, R. Tibshirani, J. Friedman, Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, second ed., Springer, New York, 2009 | DOI | MR | Zbl
[8] A. A. Khartov, “A simplified criterion for quasi-polynomial tractability of approximation of random elements and its applications”, J. Complexity, 34 (2016), 30–41 | DOI | MR | Zbl
[9] A. A. Khartov, I. A. Limar, “Asymptotic analysis in multivariate average case approximation with Gaussian kernels”, J. Complexity, 70 (2022), 101631 | DOI | MR | Zbl
[10] A. A. Khartov, I. A. Limar, “Asymptotic analysis in worst case approximation with Gaussian kernels”, J. Complexity, 82 (2024), 101838 | DOI | MR | Zbl
[11] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, v. I, EMS Tracts Math., 6, Linear Information, EMS, Zürich, 2008 | DOI | MR | Zbl
[12] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, v. II, EMS Tracts Math., 12, Standard Information for Functionals, EMS, Zürich, 2010 | DOI | MR | Zbl
[13] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, v. III, EMS Tracts Math., 18, Standard Information for Operators, EMS, Zürich, 2012 | DOI | MR | Zbl
[14] C. E. Rasmussen, C. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006 | MR | Zbl
[15] S. Pereverzyev, An Introduction to Artificial Intelligence Based on Reproducing Kernel Hilbert Spaces, Birkhäuser, 2022 | MR | Zbl
[16] B. Schölkopf, A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, Massachusetts, 2002
[17] I. Shevtsova, On the absolute constants in the Berry–Esseen type inequalities for identically distributed summands, 2011, arXiv: 1111.6554 | MR
[18] I. H. Sloan, H. Woźniakowski, “Multivariate approximation for analytic functions with Gaussian kernels”, J. Complexity, 45 (2018), 1–21 | DOI | MR | Zbl
[19] H. Wendland, Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 2005 | MR | Zbl
[20] H. Zhu, C. K. I. Williams, R. J. Rohwer, M. Morciniec, “Gaussian Regression and Optimal Finite Dimensional Linear Models”, Neural Networks and Machine Learning, ed. C. M. Bishop, Springer, Berlin, 1998, 1–20
[21] A. A. Borovkov, Teoriya veroyatnostei, URSS, M., 2009
[22] M. Sh. Birman, M. Z Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, SPb., 2010
[23] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustyrnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR
[24] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972
[25] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Fizmatlit, M., 2007