A limit theorem for Gaussian copulas with weak dependence
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 5-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article is devoted to the generalization of Gnedenko–Fisher–Tippet's theorem to the case of Gaussian copular time series with dependence. A multivariate generalization of such a problem in terms of reliability index is considered as well. It's shown that if Berman's condition on the correlation function and some restriction to the copula of interest are met, then the limit theorem coincides with the one in the independent case. Moreover, the normalizing coefficients remain the same. Some sufficient conditions on the correlation function of the pair of Gaussian time series have been obtained. These conditions allow to transfer the limit theorem from independent case for reliability index of Weibull-like copulas to the case with dependence.
@article{ZNSL_2024_535_a0,
     author = {I. A. Alekseev and V. I. Piterbarg and A. V. Savich},
     title = {A limit theorem for {Gaussian} copulas with weak dependence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--23},
     year = {2024},
     volume = {535},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a0/}
}
TY  - JOUR
AU  - I. A. Alekseev
AU  - V. I. Piterbarg
AU  - A. V. Savich
TI  - A limit theorem for Gaussian copulas with weak dependence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 5
EP  - 23
VL  - 535
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a0/
LA  - ru
ID  - ZNSL_2024_535_a0
ER  - 
%0 Journal Article
%A I. A. Alekseev
%A V. I. Piterbarg
%A A. V. Savich
%T A limit theorem for Gaussian copulas with weak dependence
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 5-23
%V 535
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a0/
%G ru
%F ZNSL_2024_535_a0
I. A. Alekseev; V. I. Piterbarg; A. V. Savich. A limit theorem for Gaussian copulas with weak dependence. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 36, Tome 535 (2024), pp. 5-23. http://geodesic.mathdoc.fr/item/ZNSL_2024_535_a0/

[1] P. Alieva, Otsenka ekstremalnogo indeksa finansovogo portfelya veibullovskogo tipa, Magisterskaya dissertatsiya, Vysshaya Shkola Ekonomiki, 2021

[2] N. G. de Brein, Asimptoticheskie metody v analize, 1961

[3] A. E. Mazur, “Modelirovanie i podgonka vremennykh ryadov s tyazhelymi khvostami raspredelenii i silnoi vremennoi zavisimostyu posredstvom gaussovskikh ryadov”, Teoriya veroyatn. i ee primen., 63 (2018), 186–190 | DOI | Zbl

[4] A. E. Mazur, V. I. Piterbarg, “Gaussovskie kopulnye vremennye ryady s tyazhelymi khvostami i silnoi vremennoi zavisimostyu”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2015, no. 5, 3–7

[5] F. Olver, Vvedenie v asimptoticheskie metody i spetsialnye funktsii, 1978

[6] V. I. Piterbarg, Statistika ekstremumov, Rukopis, Vysshaya Shkola Ekonomiki, 2017

[7] V. V. Troshin, “Ob oblasti maksimalnogo prityazheniya preobrazovaniya normalnoi sluchainoi velichiny”, Fundament. i prikl. matem., 23:1 (2020), 207–215

[8] M. V. Fedoryuk, Metod perevala, 2010

[9] S. Berman, “Limit theorems for the maximum term in stationary sequences”, Ann. Math. Statist., 35 (1964), 502–516 | DOI | MR | Zbl

[10] P. Embrechts, C. Kluppelberg, T. Mikosch, Modelling Extremal Events, 1997 | MR | Zbl

[11] J. Farkas, E. Hashorva, V. I. Piterbarg, “Asymptotic behavior of reliability function for multidimensional aggregated Weibull type reliability indices”, Analytical and Computational Methods in Probability Theory. ACMPT, Lect. Notes Comp. Sci., 10684, eds. V. Rykov, N. Singpurwalla, A. Zubkov, 2017, 251–264 | DOI | MR | Zbl

[12] A. Fereira, L. de Haan, Extreme Values Theory. An Introduction, 2006 | MR

[13] M. R. Spiegel, S. Lipschutz, J. Liu, Mathematical Handbook of Formulas and Tables, 2009

[14] V. I. Piterbarg, I. V. Rodionov, “Certain modern developments in stochastic extreme value theory, on occasion of $110$th birthday of Boris Vladimirovich Gnedenko”, Reliability: Theory and Applications, 2021

[15] D. Slepian, “The one-sided barrier problem for Gaussian noise”, Bell Syst. Techn. J., 41:2 (1962), 463–501 | DOI | MR

[16] P. Soulier, Some applications of regular variation in probability and statistics, XXII Escuela Venezolana de Matematicas, 2009