Linear maps preserving matrix discriminant
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 147-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\mathbb F$ be an infinite field, $\mathcal{M}_n(\mathbb F)$ be the space of all $n\times n$ matrices over $\mathbb F$. The paper provides a characterization of all the linear maps on $\mathcal{M}_n$ that preserve matrix discriminant. The Pierce result on these maps is improved.
@article{ZNSL_2024_534_a6,
     author = {A. Yurkov},
     title = {Linear maps preserving matrix discriminant},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--194},
     year = {2024},
     volume = {534},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a6/}
}
TY  - JOUR
AU  - A. Yurkov
TI  - Linear maps preserving matrix discriminant
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 147
EP  - 194
VL  - 534
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a6/
LA  - ru
ID  - ZNSL_2024_534_a6
ER  - 
%0 Journal Article
%A A. Yurkov
%T Linear maps preserving matrix discriminant
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 147-194
%V 534
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a6/
%G ru
%F ZNSL_2024_534_a6
A. Yurkov. Linear maps preserving matrix discriminant. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 147-194. http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a6/

[1] E. Artin, Geometricheskaya algebra, Nauka, M., 1969

[2] N. V. Ilyushechkin, “Diskriminant kharakteristicheskogo mnogochlena normalnoi matritsy”, Matem. zametki, 51:3 (1992), 16–23 | MR | Zbl

[3] S. Leng, Algebra, Nauka, M., 1968

[4] V. V. Prasolov, Mnogochleny, MTsNMO, M., 2003

[5] F. G. Frobenius, “O predstavlenii konechnykh grupp cherez lineinye podstanovki”, Teoriya kharakterov i predstavlenii grupp, ONTI, Kharkov, 1938, 106–127

[6] P. Botta, S. Pierce, W. Watkins, “Linear transformations that preserve the nilpotent matrices”, Pacific J. Math., 104:1 (1983), 39–46 | DOI | MR | Zbl

[7] J. Dieudonné, “Sur une généralisation du groupe orthogonal à quatre variables”, Arch. Math., 1:4 (1948), 282–287 | DOI | MR

[8] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhauser, Boston, 1994 | MR | Zbl

[9] E. E. Kummer, “Bemerkungen über die cubische Gleichung, durch welche die Haupt-Axen der Flächen zweiten Grades bestimmt werden”, J. Reine Angew. Math., 26 (1843), 268–272 | MR

[10] M. Marcus, R. Purves, “Linear transformations on algebras of matrices: the invariance of the elementary symmetric functions”, Can. J. Math., 11 (1959), 383–396 | DOI | MR | Zbl

[11] B. N. Parlett, “The (matrix) discriminant as a determinant”, Linear Algebra Appl., 355:1–3 (2002), 85–101 | DOI | MR | Zbl

[12] S. Pierce et.al., “A survey of linear preserver problems”, Linear Multilinear Algebra, 33:1–2 (1992) | MR

[13] S. Pierce, “Discriminant preserving linear maps”, Linear Multilinear Algebra, 8:2 (1979), 101–114 | DOI | MR | Zbl