Clique numbers of the total graphs of $2\times n$ and $3\times 3$ matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 128-146

Voir la notice de l'article provenant de la source Math-Net.Ru

The total graph of the space of $m\times n$ matrices over a field $\mathbb F$ is the graph with vertex set $M_{m\times n}(\mathbb F)$ in which distinct matrices $A$ and $B$ are connected by an edge if and obly if rank$(A+B) \min(m,n)$. It is proved that over a field of order $q$, where $q$ is a power of an odd prime, the clique number of the total graph of $2\times n$ matrices equals $q^n$, whereas that of $3\times 3$ matrices is $O(q^6)$. Up to now, this issue has only been examined for $2\times 2$ matrices.
@article{ZNSL_2024_534_a5,
     author = {A. M. Maksaev and V. V. Promyslov and D. S. Sheshenya},
     title = {Clique numbers of the total graphs of $2\times n$ and $3\times 3$ matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--146},
     publisher = {mathdoc},
     volume = {534},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a5/}
}
TY  - JOUR
AU  - A. M. Maksaev
AU  - V. V. Promyslov
AU  - D. S. Sheshenya
TI  - Clique numbers of the total graphs of $2\times n$ and $3\times 3$ matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 128
EP  - 146
VL  - 534
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a5/
LA  - ru
ID  - ZNSL_2024_534_a5
ER  - 
%0 Journal Article
%A A. M. Maksaev
%A V. V. Promyslov
%A D. S. Sheshenya
%T Clique numbers of the total graphs of $2\times n$ and $3\times 3$ matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 128-146
%V 534
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a5/
%G ru
%F ZNSL_2024_534_a5
A. M. Maksaev; V. V. Promyslov; D. S. Sheshenya. Clique numbers of the total graphs of $2\times n$ and $3\times 3$ matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 128-146. http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a5/