@article{ZNSL_2024_534_a4,
author = {A. A. Makarov and S. V. Makarova},
title = {Lifting modifications of spline wavelets with unshifted and shifted supports},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {107--127},
year = {2024},
volume = {534},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a4/}
}
A. A. Makarov; S. V. Makarova. Lifting modifications of spline wavelets with unshifted and shifted supports. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 107-127. http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a4/
[1] Yu. K. Demyanovich, “Splain-veivlety pri odnokratnom lokalnom ukrupnenii setki”, Zap. nauchn. semin. POMI, 405, 2012, 97–118
[2] Yu. K. Demyanovich, A. S. Ponomarev, “O realizatsii splain-vspleskovogo razlozheniya pervogo poryadka”, Zap. nauchn. semin. POMI, 453, 2016, 33–73
[3] I. Dobeshi, Desyat lektsii po veivletam, M.-Izhevsk, 2004
[4] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, M., 1980 | MR
[5] O. M. Kosogorov, A. A. Makarov, S. V. Makarova, “O matrichnom predstavlenii filtrov, sootvetstvuyuschikh splain-veivletam so smeschennym nositelem”, Zap. nauchn. semin. POMI, 496, 2020, 156–168 | MR
[6] L. P. Livshits, A. A. Makarov, S. V. Makarova, “O kvazilineinoi interpolyatsii minimalnymi splainami”, Zap. nauchn. semin. POMI, 524, 2023, 94–111
[7] A. A. Makarov, “O veivletnom razlozhenii prostranstv splainov pervogo poryadka”, Probl. matem. anal., 38 (2008), 47–60
[8] A. A. Makarov, “O postroenii splainov maksimalnoi gladkosti”, Probl. matem. anal., 60 (2011), 25–38 | Zbl
[9] A. A. Makarov, “Algoritmy veivletnogo utochneniya prostranstv splainov pervogo poryadka”, Trudy SPIIRAN, 19 (2011), 203–220
[10] A. A. Makarov, “Algoritmy veivletnogo szhatiya prostranstv lineinykh splainov”, Vestn. S.-Peterb. un-ta. Ser. 1, 2 (2012), 41–51 | Zbl
[11] A. A. Makarov, “O dvukh algoritmakh veivlet-razlozheniya prostranstv lineinykh splainov”, Zap. nauchn. semin. POMI, 463, 2017, 277–293
[12] A. A. Makarov, S. V. Makarova, “O bloke filtrov v splain-veivletnom preobrazovanii na neravnomernoi setke”, Sib. zh. vychisl. matem., 3 (2021), 299–311 | DOI | Zbl
[13] E. Stolnits , T. DeRouz , D. Salezin, Veivlety v kompyuternoi grafike, Izhevsk, 2002
[14] S. Uelstid, Fraktaly i veivlety dlya szhatiya izobrazhenii v deistvii, M., 2003
[15] B. M. Shumilov, “Algoritmy s rasschepleniem veivlet-preobrazovaniya splainov pervoi stepeni na neravnomernykh setkakh”, Zh. vychisl. matem. matem. fiz., 56:7 (2016), 1236–1247 | DOI | Zbl
[16] J. Carnicer, W. Dahmen, J. Peña, “Local decomposition of refinable spaces and wavelets”, Appl. Comput. Harmonic Analys, 3 (1996), 127–153 | DOI | MR | Zbl
[17] G. Faber, “Über stetige functionen”, Math. Ann., 66 (1908), 81–94 | DOI | MR
[18] M. Lounsbery, T. De Rose, J. Warren, “Multiresolution analysis for surfaces of arbitrary topological type”, ACM Trans. Graphics, 16:1 (1997), 34–73 | DOI | MR
[19] T. Lyche, K. Mørken, F. Pelosi, “Stable, linear spline wavelets on nonuniform knots with vanishing moments”, Comput. Aided Geom. Design, 26 (2009), 203–216 | DOI | MR | Zbl
[20] A. Makarov, S. Makarova, “On lazy Faber's type decomposition for linear splines”, AIP Conf. Proc., 2164 (2019), 110006 | DOI
[21] S. Makarova, A. Makarov, “On linear spline wavelets with shifted supports”, Lect. Notes Comp. Sci., 11974, 2020, 430–437 | DOI | Zbl
[22] W. Sweldens, P. Schröder, “Building your own wavelets at home”, Wavelets in Computer Graphics ACM SIGGRAPH Course notes, 1996, 15–87