Lifting modifications of spline wavelets with unshifted and shifted supports
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 107-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers systems of embedded spaces of minimal splines on nonuniform grids. In order to improve the averaging properties of spline wavelets with unshifted and shifted supports, lifting modifications using a linear combination of scaling functions of a coarser or the same resolution level are applied. Simple decomposition and reconstruction formulas, which allow for an efficient computer implementation, are obtained.
@article{ZNSL_2024_534_a4,
     author = {A. A. Makarov and S. V. Makarova},
     title = {Lifting modifications of spline wavelets with unshifted and shifted supports},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--127},
     year = {2024},
     volume = {534},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a4/}
}
TY  - JOUR
AU  - A. A. Makarov
AU  - S. V. Makarova
TI  - Lifting modifications of spline wavelets with unshifted and shifted supports
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 107
EP  - 127
VL  - 534
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a4/
LA  - ru
ID  - ZNSL_2024_534_a4
ER  - 
%0 Journal Article
%A A. A. Makarov
%A S. V. Makarova
%T Lifting modifications of spline wavelets with unshifted and shifted supports
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 107-127
%V 534
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a4/
%G ru
%F ZNSL_2024_534_a4
A. A. Makarov; S. V. Makarova. Lifting modifications of spline wavelets with unshifted and shifted supports. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 107-127. http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a4/

[1] Yu. K. Demyanovich, “Splain-veivlety pri odnokratnom lokalnom ukrupnenii setki”, Zap. nauchn. semin. POMI, 405, 2012, 97–118

[2] Yu. K. Demyanovich, A. S. Ponomarev, “O realizatsii splain-vspleskovogo razlozheniya pervogo poryadka”, Zap. nauchn. semin. POMI, 453, 2016, 33–73

[3] I. Dobeshi, Desyat lektsii po veivletam, M.-Izhevsk, 2004

[4] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, M., 1980 | MR

[5] O. M. Kosogorov, A. A. Makarov, S. V. Makarova, “O matrichnom predstavlenii filtrov, sootvetstvuyuschikh splain-veivletam so smeschennym nositelem”, Zap. nauchn. semin. POMI, 496, 2020, 156–168 | MR

[6] L. P. Livshits, A. A. Makarov, S. V. Makarova, “O kvazilineinoi interpolyatsii minimalnymi splainami”, Zap. nauchn. semin. POMI, 524, 2023, 94–111

[7] A. A. Makarov, “O veivletnom razlozhenii prostranstv splainov pervogo poryadka”, Probl. matem. anal., 38 (2008), 47–60

[8] A. A. Makarov, “O postroenii splainov maksimalnoi gladkosti”, Probl. matem. anal., 60 (2011), 25–38 | Zbl

[9] A. A. Makarov, “Algoritmy veivletnogo utochneniya prostranstv splainov pervogo poryadka”, Trudy SPIIRAN, 19 (2011), 203–220

[10] A. A. Makarov, “Algoritmy veivletnogo szhatiya prostranstv lineinykh splainov”, Vestn. S.-Peterb. un-ta. Ser. 1, 2 (2012), 41–51 | Zbl

[11] A. A. Makarov, “O dvukh algoritmakh veivlet-razlozheniya prostranstv lineinykh splainov”, Zap. nauchn. semin. POMI, 463, 2017, 277–293

[12] A. A. Makarov, S. V. Makarova, “O bloke filtrov v splain-veivletnom preobrazovanii na neravnomernoi setke”, Sib. zh. vychisl. matem., 3 (2021), 299–311 | DOI | Zbl

[13] E. Stolnits , T. DeRouz , D. Salezin, Veivlety v kompyuternoi grafike, Izhevsk, 2002

[14] S. Uelstid, Fraktaly i veivlety dlya szhatiya izobrazhenii v deistvii, M., 2003

[15] B. M. Shumilov, “Algoritmy s rasschepleniem veivlet-preobrazovaniya splainov pervoi stepeni na neravnomernykh setkakh”, Zh. vychisl. matem. matem. fiz., 56:7 (2016), 1236–1247 | DOI | Zbl

[16] J. Carnicer, W. Dahmen, J. Peña, “Local decomposition of refinable spaces and wavelets”, Appl. Comput. Harmonic Analys, 3 (1996), 127–153 | DOI | MR | Zbl

[17] G. Faber, “Über stetige functionen”, Math. Ann., 66 (1908), 81–94 | DOI | MR

[18] M. Lounsbery, T. De Rose, J. Warren, “Multiresolution analysis for surfaces of arbitrary topological type”, ACM Trans. Graphics, 16:1 (1997), 34–73 | DOI | MR

[19] T. Lyche, K. Mørken, F. Pelosi, “Stable, linear spline wavelets on nonuniform knots with vanishing moments”, Comput. Aided Geom. Design, 26 (2009), 203–216 | DOI | MR | Zbl

[20] A. Makarov, S. Makarova, “On lazy Faber's type decomposition for linear splines”, AIP Conf. Proc., 2164 (2019), 110006 | DOI

[21] S. Makarova, A. Makarov, “On linear spline wavelets with shifted supports”, Lect. Notes Comp. Sci., 11974, 2020, 430–437 | DOI | Zbl

[22] W. Sweldens, P. Schröder, “Building your own wavelets at home”, Wavelets in Computer Graphics ACM SIGGRAPH Course notes, 1996, 15–87