Reduced eigenvalue inclusion sets and related classes of nonsingular matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 89-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers the classes of nonsingular matrices, referred to as PSDD and PDZ matrices, that are associated with the Gerschgorin disks and Dashnic–Zusmanovich eigenvalue inclusion sets from which some subsets are excluded. It is demonstrated that PSDD and PDZ matrices are obtained by permuting rows of SDD and Dashnic–Zusmanovich (DZ) matrices, respectively. Based on these results, for PSDD and PDZ matrices $A$ upper bounds for the $l_\infty$-norm of the product $A^{-1}Q$ of the inverse matrix times a rectangular matrix $Q$ are derived.
@article{ZNSL_2024_534_a3,
     author = {L. Yu. Kolotilina},
     title = {Reduced eigenvalue inclusion sets and related classes of nonsingular matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {89--106},
     year = {2024},
     volume = {534},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a3/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Reduced eigenvalue inclusion sets and related classes of nonsingular matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 89
EP  - 106
VL  - 534
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a3/
LA  - ru
ID  - ZNSL_2024_534_a3
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Reduced eigenvalue inclusion sets and related classes of nonsingular matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 89-106
%V 534
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a3/
%G ru
%F ZNSL_2024_534_a3
L. Yu. Kolotilina. Reduced eigenvalue inclusion sets and related classes of nonsingular matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 89-106. http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a3/

[1] L. S. Dashnits, M. S. Zusmanovich, “O nekotorykh kriteriyakh regulyarnosti matrits i lokalizatsii ikh spektra”, Zh. vychisl. mat. mat. fiz., 10:5 (1970), 1092–1097 | MR | Zbl

[2] L. Yu. Kolotilina, “O matritsakh Dashnitsa–Zusmanovicha (DZ) i matritsakh tipa Dashnitsa–Zusmanovicha (DZT) i ikh obratnykh”, Zap. nauchn. semin. POMI, 472, 2018, 145–165

[3] L. Yu. Kolotilina, “Verkhnie otsnki dlya $\|A^{-1}Q\|_\infty$”, Zap. nauchn. semin. POMI, 514, 2022, 77–87

[4] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. Soc. Ind. Appl. Math., 11 (1963), 95–104 | DOI | MR | Zbl

[5] L. Cvetković, “H-matrix theory vs. eigenvalue localization”, Numer. Algorithms, 42 (2006), 229–245 | DOI | MR | Zbl

[6] Suhua Li, Chaoqian Li, Yaotang Li, Exclusion sets for eigenvalues of matrices, 23 May 2017, arXiv: 1705.01758v2 [math.SP]

[7] Y. Li, Y. Wang, “Schur complement-based infinity norm bounds for the inverse of GDSDD matrices”, Mathematics, 10 (2022), 186 | DOI | MR | Zbl

[8] M. Marcus, H. Minc, A Syrvey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964 | MR

[9] A. Melman, “Gershgorin disk fragments”, Math. Mag., 83 (2010), 123–129 | DOI | MR | Zbl

[10] N. Morac̆a, “Upper bounds for the infinity norm of the inverse of SDD and ${\mathcal S}$-SDD matrices”, J. Comput. Appl. Math., 206 (2007), 666–678 | DOI | MR | Zbl

[11] M. Parodi, Sur quelques propriétés des valeurs caractéristiques des matrices carrées, Mémor. Sci. Math. Soc., 118, 1952 | MR

[12] H. Schneider, “Regions of exclusion for the latent roots of a matrix”, Proc. Amer. Math. Soc., 5 (1954), 320–322 | DOI | MR | Zbl

[13] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl

[14] X. R. Yong, “Two properties of diagonally dominant matrices”, Numer. Linear Algebra, 3 (1996), 173–177 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] Jianxing Zhao, Lili She, “Exclusion sets in Dashnic–Zusmanovich localization sets”, J. Ineq. Appl., 2019 (2019), 228 | DOI | MR | Zbl