SSDD matrices and relations with other subclasses of nonsingular $\mathcal H$-matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 57-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper introduces into consideration a new matrix class of the so-called SSDD (Schur SDD) matrices, which contains the class of SDD (strictly diagonally dominant) matrices and is itself contained in the class of nonsingular $\mathcal{H}$-matrices. The definition of an SSDD matrix $A$ is based on distinguishing a subset $S$ of its strictly diagonally dominant rows and requiring that the Schur complement $\mathcal{M}(A)/S$ of its comparison matrix be an SDD matrix. Properties of SSDD matrices and their relations with other subclasses of the class of $\mathcal{H}$-matrices are considered. In particular, it is shown that such known matrix classes as those of ОВ, SOB, DZ, DZT (DZ-type), CKV-type, $S$-SDD, SDD$_1$, SDD$_k$, GSDD$_1$, and also GSDD$_1^*$ matrices all are contained in the class of SSDD matrices. On the other hand, the SSDD matrices themselves are simultaneously РН- and $SD$-SDD matrices and, up to symmetric row and column permutations, they coincide with the block $2\times 2$ generalized Nekrasov matrices, the so-called GN matrices. Also some upper bounds for the $l_\infty$-norm of the inverse to an SSDD matrix are established.
@article{ZNSL_2024_534_a2,
     author = {L. Yu. Kolotilina},
     title = {SSDD matrices and relations with other subclasses of nonsingular $\mathcal H$-matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {57--88},
     year = {2024},
     volume = {534},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a2/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - SSDD matrices and relations with other subclasses of nonsingular $\mathcal H$-matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 57
EP  - 88
VL  - 534
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a2/
LA  - ru
ID  - ZNSL_2024_534_a2
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T SSDD matrices and relations with other subclasses of nonsingular $\mathcal H$-matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 57-88
%V 534
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a2/
%G ru
%F ZNSL_2024_534_a2
L. Yu. Kolotilina. SSDD matrices and relations with other subclasses of nonsingular $\mathcal H$-matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 57-88. http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a2/

[1] L. S. Dashnits, M. S. Zusmanovich, “O nekotorykh kriteriyakh regulyarnosti matrits i lokalizatsii ikh spektra”, Zh. vychisl. mat. mat. fiz., 10:5 (1970), 1092–1097 | MR | Zbl

[2] L. Yu. Kolotilina, “Psevdoblochnye usloviya diagonalnogo preobladaniya”, Zap. nauchn. semin. POMI, 323, 2005, 94–131 | Zbl

[3] L. Yu. Kolotilina, “Otsenki opredelitelei i obratnykh dlya nekotorykh $H$-matrits”, Zap. nauchn. semin. POMI, 346, 2007, 81–102

[4] L. Yu. Kolotilina, “Kharakterizatsiya $PM$- i $PH$-matrits v terminakh diagonalnogo preobladaniya”, Zap. nauchn. semin. POMI, 367, 2009, 110–120

[5] L. Yu. Kolotilina, “O matritsakh Dashnitsa–Zusmanovicha (DZ) i matritsakh tipa Dashnitsa–Zusmanovicha (DZT) i ikh obratnykh”, Zap. nauchn. semin. POMI, 472, 2018, 145–165

[6] L. Yu. Kolotilina, “Ob odnom blochnom obobschenii matrits Nekrasova”, Zap. nauchn. semin. POMI, 496, 2020, 138–155

[7] L. Yu. Kolotilina, “Verkhnie otsnki dlya $\|A^{-1}Q\|_\infty$”, Zap. nauchn. semin. POMI, 514, 2022, 77–87

[8] L. Yu. Kolotilina, “Ob SDD$_1$ matritsakh”, Zap. nauchn. semin. POMI, 514, 2022, 88–112

[9] L. Yu. Kolotilina, “Ob SDD$_1$ matritsakh i ikh obobscheniyakh”, Zap. nauchn. semin. POMI, 524, 2023, 74–93

[10] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. Soc. Ind. Appl. Math., 11 (1963), 95–104 | DOI | MR | Zbl

[11] A. Brauer, “Limits for the characteristic roots of a matrix. II”, Duke Math. J., 14 (1947), 21–26 | DOI | MR | Zbl

[12] D. Carlson, T. Markham, “Schur complements of diagonally dominant matrices”, Czech. Math. J., 29 (1979), 246–251 | DOI | MR | Zbl

[13] X. Cheng, Y. Li, L. Liu, Y. Wang, “Infinity norm upper bounds for the inverse of SDD$_1$ matrices”, AIMS Math., 7:5 (2022), 8847–8860 | DOI | MR

[14] D. L. Cvetković, L. Cvetković, C. Q. Li, “CKV-type matrices with applications”, Linear Algebra Appl., 608 (2021), 158–184 | DOI | MR | Zbl

[15] L. Cvetković, V. Kostić, R. Varga, “A new Gers̆gorin-type eigenvalue inclusion area”, ETNA, 18 (2004), 73–80 | MR | Zbl

[16] P. F. Dai, “A note on diagonal dominance, Schur complements and some classes of H-matrices and P-matrices”, Adv. Comput. Math., 42 (2016), 1–4 | DOI | MR | Zbl

[17] K. Doroslovac̆ki, D. Cvetković, “On matrices with only one non-SDD row”, Mathematics, 11 (2023), 2382 | DOI

[18] Ping-Fan Dai, Jinping Li, Shaoyu Zhao, “Infinity norn bounds for the inverse for GSDD$_1$ matrices using scaling matrices”, Comput. Appl. Math., 42 (2023), 121 | DOI | MR | Zbl

[19] Y. M. Gao, X. H. Wang, “Criteria for generalized diagonal dominant and M-matrices”, Linear Algebra Appl., 169 (1992), 257–268 | DOI | MR | Zbl

[20] L. Yu. Kolotilina, “Generalizations of the Ostrowski–Brauer theorem”, Linear Algebra Appl., 364 (2003), 65–80 | DOI | MR | Zbl

[21] L. Yu. Kolotilina, “Bounds for the infinity norm of the inverse for certain $M$- and $H$-matrices”, Linear Algebra Appl., 430 (2009), 692–702 | DOI | MR | Zbl

[22] Bishan Li, M. J. Tsatsomeros, “Doubly diagonally dominant matrices”, Linear Algebra Appl., 261 (1997), 221–235 | DOI | MR | Zbl

[23] Y. Li, Y. Wang, “Schur complement-based infinity norm bounds for the inverse of GDSDD matrices”, Mathematics, 10 (2022), 186 | DOI | MR | Zbl

[24] J. Liu, Y. Huang, F. Zhang, “The Schur complements of generalized doubly diagonally dominant matrices”, Linear Algebra Appl., 378 (2004), 231–244 | DOI | MR | Zbl

[25] A. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR | Zbl

[26] J. M. Peña, “Diagonal dominance, Schur complements and some classes of $H$-matrices and P-matrices”, Adv. Comput. Math., 35 (2011), 357–373 | DOI | MR | Zbl

[27] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl

[28] R. S. Varga, Gers̆gorin and His Circles, Springer, 2004 | MR | Zbl

[29] Xiaodong Wang, Feng Wang, “Infinity norm upper bounds for the inverse of $SDD_k$ matrices”, AIMS Math., 8:10 (2023), 24999–25016 | DOI | MR

[30] X. R. Yong, “Two properties of diagonally dominant matrices”, Numer. Linear Algebra, 3 (1996), 173–177 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[31] Jianxing Zhao, Qilong Liu, Chaoqian Li, Yaotang Li, “Dashnic–Zusmanovich type matrices: a new subclass of nonsingular H-matrices”, Linear Algebra Appl., 552 (2018), 277–287 | DOI | MR | Zbl