@article{ZNSL_2024_534_a2,
author = {L. Yu. Kolotilina},
title = {SSDD matrices and relations with other subclasses of nonsingular $\mathcal H$-matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {57--88},
year = {2024},
volume = {534},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a2/}
}
L. Yu. Kolotilina. SSDD matrices and relations with other subclasses of nonsingular $\mathcal H$-matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 57-88. http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a2/
[1] L. S. Dashnits, M. S. Zusmanovich, “O nekotorykh kriteriyakh regulyarnosti matrits i lokalizatsii ikh spektra”, Zh. vychisl. mat. mat. fiz., 10:5 (1970), 1092–1097 | MR | Zbl
[2] L. Yu. Kolotilina, “Psevdoblochnye usloviya diagonalnogo preobladaniya”, Zap. nauchn. semin. POMI, 323, 2005, 94–131 | Zbl
[3] L. Yu. Kolotilina, “Otsenki opredelitelei i obratnykh dlya nekotorykh $H$-matrits”, Zap. nauchn. semin. POMI, 346, 2007, 81–102
[4] L. Yu. Kolotilina, “Kharakterizatsiya $PM$- i $PH$-matrits v terminakh diagonalnogo preobladaniya”, Zap. nauchn. semin. POMI, 367, 2009, 110–120
[5] L. Yu. Kolotilina, “O matritsakh Dashnitsa–Zusmanovicha (DZ) i matritsakh tipa Dashnitsa–Zusmanovicha (DZT) i ikh obratnykh”, Zap. nauchn. semin. POMI, 472, 2018, 145–165
[6] L. Yu. Kolotilina, “Ob odnom blochnom obobschenii matrits Nekrasova”, Zap. nauchn. semin. POMI, 496, 2020, 138–155
[7] L. Yu. Kolotilina, “Verkhnie otsnki dlya $\|A^{-1}Q\|_\infty$”, Zap. nauchn. semin. POMI, 514, 2022, 77–87
[8] L. Yu. Kolotilina, “Ob SDD$_1$ matritsakh”, Zap. nauchn. semin. POMI, 514, 2022, 88–112
[9] L. Yu. Kolotilina, “Ob SDD$_1$ matritsakh i ikh obobscheniyakh”, Zap. nauchn. semin. POMI, 524, 2023, 74–93
[10] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. Soc. Ind. Appl. Math., 11 (1963), 95–104 | DOI | MR | Zbl
[11] A. Brauer, “Limits for the characteristic roots of a matrix. II”, Duke Math. J., 14 (1947), 21–26 | DOI | MR | Zbl
[12] D. Carlson, T. Markham, “Schur complements of diagonally dominant matrices”, Czech. Math. J., 29 (1979), 246–251 | DOI | MR | Zbl
[13] X. Cheng, Y. Li, L. Liu, Y. Wang, “Infinity norm upper bounds for the inverse of SDD$_1$ matrices”, AIMS Math., 7:5 (2022), 8847–8860 | DOI | MR
[14] D. L. Cvetković, L. Cvetković, C. Q. Li, “CKV-type matrices with applications”, Linear Algebra Appl., 608 (2021), 158–184 | DOI | MR | Zbl
[15] L. Cvetković, V. Kostić, R. Varga, “A new Gers̆gorin-type eigenvalue inclusion area”, ETNA, 18 (2004), 73–80 | MR | Zbl
[16] P. F. Dai, “A note on diagonal dominance, Schur complements and some classes of H-matrices and P-matrices”, Adv. Comput. Math., 42 (2016), 1–4 | DOI | MR | Zbl
[17] K. Doroslovac̆ki, D. Cvetković, “On matrices with only one non-SDD row”, Mathematics, 11 (2023), 2382 | DOI
[18] Ping-Fan Dai, Jinping Li, Shaoyu Zhao, “Infinity norn bounds for the inverse for GSDD$_1$ matrices using scaling matrices”, Comput. Appl. Math., 42 (2023), 121 | DOI | MR | Zbl
[19] Y. M. Gao, X. H. Wang, “Criteria for generalized diagonal dominant and M-matrices”, Linear Algebra Appl., 169 (1992), 257–268 | DOI | MR | Zbl
[20] L. Yu. Kolotilina, “Generalizations of the Ostrowski–Brauer theorem”, Linear Algebra Appl., 364 (2003), 65–80 | DOI | MR | Zbl
[21] L. Yu. Kolotilina, “Bounds for the infinity norm of the inverse for certain $M$- and $H$-matrices”, Linear Algebra Appl., 430 (2009), 692–702 | DOI | MR | Zbl
[22] Bishan Li, M. J. Tsatsomeros, “Doubly diagonally dominant matrices”, Linear Algebra Appl., 261 (1997), 221–235 | DOI | MR | Zbl
[23] Y. Li, Y. Wang, “Schur complement-based infinity norm bounds for the inverse of GDSDD matrices”, Mathematics, 10 (2022), 186 | DOI | MR | Zbl
[24] J. Liu, Y. Huang, F. Zhang, “The Schur complements of generalized doubly diagonally dominant matrices”, Linear Algebra Appl., 378 (2004), 231–244 | DOI | MR | Zbl
[25] A. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR | Zbl
[26] J. M. Peña, “Diagonal dominance, Schur complements and some classes of $H$-matrices and P-matrices”, Adv. Comput. Math., 35 (2011), 357–373 | DOI | MR | Zbl
[27] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl
[28] R. S. Varga, Gers̆gorin and His Circles, Springer, 2004 | MR | Zbl
[29] Xiaodong Wang, Feng Wang, “Infinity norm upper bounds for the inverse of $SDD_k$ matrices”, AIMS Math., 8:10 (2023), 24999–25016 | DOI | MR
[30] X. R. Yong, “Two properties of diagonally dominant matrices”, Numer. Linear Algebra, 3 (1996), 173–177 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[31] Jianxing Zhao, Qilong Liu, Chaoqian Li, Yaotang Li, “Dashnic–Zusmanovich type matrices: a new subclass of nonsingular H-matrices”, Linear Algebra Appl., 552 (2018), 277–287 | DOI | MR | Zbl