Frobenius and Sylvester inequalities for the chainable rank
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 35-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper shows that any nonnegative $n \times m$ matrix free of zero rows and columns determines a map of the partition lattice of the set of cardinality $n$ into the partition lattice of the set of cardinality $m$. These maps have certain properties similar to those of linear maps on vector spaces. In particular, for such maps the rank function is correctly defined and possesses a number of properties of the ordinary rank, including an upper bound for the rank of a matrix product. However, so far no lower bound has been established. In this paper, the counterpart of the Frobenius inequality for the above rank function is proved and, as a corollary, the Sylvester bound, providing a lower bound for the rank of a matrix product, is obtained.
@article{ZNSL_2024_534_a1,
     author = {A. E. Guterman and E. R. Shafeev},
     title = {Frobenius and {Sylvester} inequalities for the chainable rank},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--56},
     year = {2024},
     volume = {534},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a1/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - E. R. Shafeev
TI  - Frobenius and Sylvester inequalities for the chainable rank
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 35
EP  - 56
VL  - 534
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a1/
LA  - ru
ID  - ZNSL_2024_534_a1
ER  - 
%0 Journal Article
%A A. E. Guterman
%A E. R. Shafeev
%T Frobenius and Sylvester inequalities for the chainable rank
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 35-56
%V 534
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a1/
%G ru
%F ZNSL_2024_534_a1
A. E. Guterman; E. R. Shafeev. Frobenius and Sylvester inequalities for the chainable rank. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 35-56. http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a1/

[1] Yu. A. Alpin, I. V. Bashkin, “Neotritsatelnye tsepnye matritsy”, Zap. nauchn. semin. POMI, 496, 2020, 5–25

[2] Yu. A. Alpin, I. V. Bashkin, “Neotritsatelnye tsepnye matritsy i uslovie Kolmogorova”, Zap. nauchn. semin. POMI, 504, 2021, 5–20

[3] Yu. A. Alpin, A. E. Guterman, E. R. Shafeev, “Verkhnyaya granitsa tsepnogo indeksa.”, Zap. nauchn. semin. POMI, 514, 2023, 5–17 | Zbl

[4] Yu. A. Alpin, A. E. Guterman, E. R. Shafeev, “Tsepnye svoistva polugrupp neotritsatelnykh matrits”, Sib. elektr. matem. izv., 2024 (to appear) | Zbl

[5] V. N. Sachkov, V. E. Tarakanov, Kombinatorika neotritsatelnykh matrits, TVP, 2000 | MR

[6] G. Birkhoff, Lattice Theory, American Mathematical Society, 1967 | MR | Zbl

[7] B. A. Davey, H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 2002 | MR | Zbl

[8] G. Grätzer, Lattice Theory: Foundation, Birkhäuser, Basel, 2011 | MR | Zbl

[9] D. J. Hartfiel, C. J. Maxson, “The chainable matrix, a special combinatorial matrix”, Discrete Math., 12 (1975), 245–256 | DOI | MR | Zbl

[10] O. Ore, “Theory of Equivalence Relations”, J. Symb. Logic, 8:1 (1943), 55–56

[11] P. Pudlák, J. Tuma, “Every finite lattice can be embedded in a finite partition lattice”, Algebra Universalis, 10 (1980), 74–95 | DOI | MR | Zbl

[12] P. M. Whitman, “Lattices, equivalence relations, and subgroups”, Bull. Amer. Math. Soc., 52 (1946), 507–522 | DOI | MR | Zbl