Frobenius and Sylvester inequalities for the chainable rank
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 35-56

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper shows that any nonnegative $n \times m$ matrix free of zero rows and columns determines a map of the partition lattice of the set of cardinality $n$ into the partition lattice of the set of cardinality $m$. These maps have certain properties similar to those of linear maps on vector spaces. In particular, for such maps the rank function is correctly defined and possesses a number of properties of the ordinary rank, including an upper bound for the rank of a matrix product. However, so far no lower bound has been established. In this paper, the counterpart of the Frobenius inequality for the above rank function is proved and, as a corollary, the Sylvester bound, providing a lower bound for the rank of a matrix product, is obtained.
@article{ZNSL_2024_534_a1,
     author = {A. E. Guterman and E. R. Shafeev},
     title = {Frobenius and {Sylvester} inequalities for the chainable rank},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--56},
     publisher = {mathdoc},
     volume = {534},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a1/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - E. R. Shafeev
TI  - Frobenius and Sylvester inequalities for the chainable rank
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 35
EP  - 56
VL  - 534
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a1/
LA  - ru
ID  - ZNSL_2024_534_a1
ER  - 
%0 Journal Article
%A A. E. Guterman
%A E. R. Shafeev
%T Frobenius and Sylvester inequalities for the chainable rank
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 35-56
%V 534
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a1/
%G ru
%F ZNSL_2024_534_a1
A. E. Guterman; E. R. Shafeev. Frobenius and Sylvester inequalities for the chainable rank. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 35-56. http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a1/