@article{ZNSL_2024_534_a1,
author = {A. E. Guterman and E. R. Shafeev},
title = {Frobenius and {Sylvester} inequalities for the chainable rank},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {35--56},
year = {2024},
volume = {534},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a1/}
}
A. E. Guterman; E. R. Shafeev. Frobenius and Sylvester inequalities for the chainable rank. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 35-56. http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a1/
[1] Yu. A. Alpin, I. V. Bashkin, “Neotritsatelnye tsepnye matritsy”, Zap. nauchn. semin. POMI, 496, 2020, 5–25
[2] Yu. A. Alpin, I. V. Bashkin, “Neotritsatelnye tsepnye matritsy i uslovie Kolmogorova”, Zap. nauchn. semin. POMI, 504, 2021, 5–20
[3] Yu. A. Alpin, A. E. Guterman, E. R. Shafeev, “Verkhnyaya granitsa tsepnogo indeksa.”, Zap. nauchn. semin. POMI, 514, 2023, 5–17 | Zbl
[4] Yu. A. Alpin, A. E. Guterman, E. R. Shafeev, “Tsepnye svoistva polugrupp neotritsatelnykh matrits”, Sib. elektr. matem. izv., 2024 (to appear) | Zbl
[5] V. N. Sachkov, V. E. Tarakanov, Kombinatorika neotritsatelnykh matrits, TVP, 2000 | MR
[6] G. Birkhoff, Lattice Theory, American Mathematical Society, 1967 | MR | Zbl
[7] B. A. Davey, H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 2002 | MR | Zbl
[8] G. Grätzer, Lattice Theory: Foundation, Birkhäuser, Basel, 2011 | MR | Zbl
[9] D. J. Hartfiel, C. J. Maxson, “The chainable matrix, a special combinatorial matrix”, Discrete Math., 12 (1975), 245–256 | DOI | MR | Zbl
[10] O. Ore, “Theory of Equivalence Relations”, J. Symb. Logic, 8:1 (1943), 55–56
[11] P. Pudlák, J. Tuma, “Every finite lattice can be embedded in a finite partition lattice”, Algebra Universalis, 10 (1980), 74–95 | DOI | MR | Zbl
[12] P. M. Whitman, “Lattices, equivalence relations, and subgroups”, Bull. Amer. Math. Soc., 52 (1946), 507–522 | DOI | MR | Zbl