Geometry of varieties of mutually orthogonal matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 5-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the ring of square matrices $\mathrm{Mat}_n(\Bbbk)$ of order $n$ over a field $\Bbbk$, one can construct the orthogonality graph $\operatorname{O}(\mathrm{Mat}_n(\Bbbk))$, whose vertices are the zero divisors of the ring $\mathrm{Mat}_n(\Bbbk)$. Two vertices $A$ and $B$ are connected by an edge if $AB=BA=0$. The notion of the distance between two elements of the ring naturally implies that one can consider the set $\operatorname{O}^d_n$ of pairs of elements lying within the distance at most $d$. It is proved that such sets form affine algebraic varieties, a decomposition of these varieties into irreducible components is provided, and their dimensions are calculated. The paper also describes the sets that are defined similarly for the ring of upper triangular matrices and suggests generalizations of these results to arbitrary finite-dimensional algebras.
@article{ZNSL_2024_534_a0,
     author = {A. E. Guterman and S. A. Zhilina and K. D. Mukhanov},
     title = {Geometry of varieties of mutually orthogonal matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--34},
     year = {2024},
     volume = {534},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a0/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - S. A. Zhilina
AU  - K. D. Mukhanov
TI  - Geometry of varieties of mutually orthogonal matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 5
EP  - 34
VL  - 534
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a0/
LA  - ru
ID  - ZNSL_2024_534_a0
ER  - 
%0 Journal Article
%A A. E. Guterman
%A S. A. Zhilina
%A K. D. Mukhanov
%T Geometry of varieties of mutually orthogonal matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 5-34
%V 534
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a0/
%G ru
%F ZNSL_2024_534_a0
A. E. Guterman; S. A. Zhilina; K. D. Mukhanov. Geometry of varieties of mutually orthogonal matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVII, Tome 534 (2024), pp. 5-34. http://geodesic.mathdoc.fr/item/ZNSL_2024_534_a0/

[1] B. R. Bakhadly, A. E. Guterman, O. V. Markova, “Grafy, opredelennye ortogonalnostyu”, Zap. nauchn. semin. POMI, 428, 2014

[2] A. E. Guterman, M. A. Efimov, “Monotonnye otobrazheniya matrits indeksa $1$”, Zap. nauchn. semin. POMI, 405, 2012, 67–96

[3] A. E. Guterman, O.V. Markova, “Grafy ortogonalnosti matrits nad telami”, Zap. nauchn. semin. POMI, 463, 2017, 81–93

[4] D. Koks, D. Littl, D. O'Shi, Idealy, mnogoobraziya i algoritmy. Vvedenie v vychislitelnye aspekty algebraicheskoi geometrii i kommutativnoi algebry, Mir, M., 2000

[5] O. G. Styrt, “Grafy ortogonalnosti matrits nad kommutativnymi koltsami”, Intellekt. sistemy. Teor. pril., 27:1 (2023), 24–34

[6] I. R. Shafarevich, Osnovy algebraicheskoi geometrii, MTsNMO, 2007 | MR

[7] B. R. Bakhadly, “Orthogonality graph of the algebra of upper triangular matrices”, Oper. Matrices, 11:2 (2017), 455–463 | DOI | MR | Zbl

[8] J. K. Baksalary, J. Hauke, “A further algebraic version of Cochran's theorem and matrix partial orderings”, Linear Algebra Appl., 127 (1990), 157–169 | DOI | MR | Zbl

[9] G. Dolinar, A. E. Guterman, B. Kuzma, P. Oblak, “Extremal matrix centralizers”, Linear Algebra Appl., 438:7 (2013), 2904–2910 | DOI | MR | Zbl

[10] M. Elyze, A. Guterman, R. Morrison, K. Šivic, “Higher-distance commuting varieties”, Linear Multilinear Algebra, 70:17 (2022), 3248–3270 | DOI | MR | Zbl

[11] Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford Grad. Texts Math., 6, Oxford University Press, 2002 | MR | Zbl

[12] P. G. Ovchinnikov, “Automorphisms of the poset of skew projections”, J. Funct. Analysis, 115 (1993), 988–994 | DOI | MR

[13] P. Šemrl, “Order-preserving maps on the poset of idempotent matrices”, Acta Sci. Math. (Szeged), 69 (2003), 481–490 | MR

[14] M-C. Tsai, M. Bogale, H. Huang, “On triangular similarity of nilpotent triangular matrices”, Linear Algebra Appl., 596 (2020), 1–35 | DOI | MR | Zbl