On the dynamic inverse problem for the first-order transport system
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 153-169
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A dynamic inverse problem for a first-order dissipative transport system is considered for reconstructing the complex potential matrix from the dynamic response (the Dirichlet-Neumann operator) of the system for positive and negative times. In addition, a special physically motivated case of the system is considered when the potential matrix can be reconstructed only from the positive time response.
			
            
            
            
          
        
      @article{ZNSL_2024_533_a9,
     author = {A. S. Mikhailov and V. S. Mikhailov},
     title = {On the dynamic inverse problem for the first-order transport system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {153--169},
     publisher = {mathdoc},
     volume = {533},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a9/}
}
                      
                      
                    TY - JOUR AU - A. S. Mikhailov AU - V. S. Mikhailov TI - On the dynamic inverse problem for the first-order transport system JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 153 EP - 169 VL - 533 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a9/ LA - ru ID - ZNSL_2024_533_a9 ER -
A. S. Mikhailov; V. S. Mikhailov. On the dynamic inverse problem for the first-order transport system. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 153-169. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a9/