Representations of algebra of harmonic eiconals
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 124-139

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the spectrum of the sub-algebra $\mathscr{E}$ of bounded operators on the space $H$ of potential harmonic vector fields on the disk $\mathbb{D}$ generated by the operator integrals (eiconals) of the form $\int t dP_{\Gamma_t}$, where $t\mapsto\Gamma_t$ is an expanding family of arcs in $\mathbb{T}:=\partial\mathbb{D}$ and $P_{\Gamma_t}$ is a projection on the subspace of $H$ spanned by vector fields normal to $\mathbb{T}\setminus\Gamma_t$.
@article{ZNSL_2024_533_a7,
     author = {D. V. Korikov},
     title = {Representations of algebra of harmonic eiconals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--139},
     publisher = {mathdoc},
     volume = {533},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a7/}
}
TY  - JOUR
AU  - D. V. Korikov
TI  - Representations of algebra of harmonic eiconals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 124
EP  - 139
VL  - 533
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a7/
LA  - ru
ID  - ZNSL_2024_533_a7
ER  - 
%0 Journal Article
%A D. V. Korikov
%T Representations of algebra of harmonic eiconals
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 124-139
%V 533
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a7/
%G ru
%F ZNSL_2024_533_a7
D. V. Korikov. Representations of algebra of harmonic eiconals. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 124-139. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a7/