Representations of algebra of harmonic eiconals
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 124-139
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the spectrum of the sub-algebra $\mathscr{E}$ of bounded operators on the space $H$ of potential harmonic vector fields on the disk $\mathbb{D}$ generated by the operator integrals (eiconals) of the form $\int t dP_{\Gamma_t}$, where $t\mapsto\Gamma_t$ is an expanding family of arcs in $\mathbb{T}:=\partial\mathbb{D}$ and $P_{\Gamma_t}$ is a projection on the subspace of $H$ spanned by vector fields normal to $\mathbb{T}\setminus\Gamma_t$.
@article{ZNSL_2024_533_a7,
author = {D. V. Korikov},
title = {Representations of algebra of harmonic eiconals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--139},
publisher = {mathdoc},
volume = {533},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a7/}
}
D. V. Korikov. Representations of algebra of harmonic eiconals. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 124-139. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a7/