Representations of algebra of harmonic eiconals
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 124-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We describe the spectrum of the sub-algebra $\mathscr{E}$ of bounded operators on the space $H$ of potential harmonic vector fields on the disk $\mathbb{D}$ generated by the operator integrals (eiconals) of the form $\int t dP_{\Gamma_t}$, where $t\mapsto\Gamma_t$ is an expanding family of arcs in $\mathbb{T}:=\partial\mathbb{D}$ and $P_{\Gamma_t}$ is a projection on the subspace of $H$ spanned by vector fields normal to $\mathbb{T}\setminus\Gamma_t$.
@article{ZNSL_2024_533_a7,
     author = {D. V. Korikov},
     title = {Representations of algebra of harmonic eiconals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--139},
     year = {2024},
     volume = {533},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a7/}
}
TY  - JOUR
AU  - D. V. Korikov
TI  - Representations of algebra of harmonic eiconals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 124
EP  - 139
VL  - 533
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a7/
LA  - ru
ID  - ZNSL_2024_533_a7
ER  - 
%0 Journal Article
%A D. V. Korikov
%T Representations of algebra of harmonic eiconals
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 124-139
%V 533
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a7/
%G ru
%F ZNSL_2024_533_a7
D. V. Korikov. Representations of algebra of harmonic eiconals. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 124-139. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a7/

[1] M. I. Belishev, “The Calderon problem for two-dimensional manifolds by the BC-method”, SIAM Journal of Mathematical Analysis, 35:1 (2003), 172–182 | DOI | MR | Zbl

[2] M. I. Belishev, “Geometrization of Rings as a Method for Solving Inverse Problems”, Sobolev Spaces in Mathematics III. Applications in Mathematical Physics, ed. V. Isakov, Springer, 2008, 5–24 | MR

[3] M. I. Belishev, M. N. Demchenko, “Elements of noncommutative geometry in inverse problems on manifolds”, J. Geometry and Physics, 78 (2014), 29–47 | DOI | MR | Zbl

[4] M. I. Belishev, A. V. Kaplun, “Kanonicheskoe predstavlenie $C^*$-algebry eikonalov metricheskogo grafa”, Izvestiya Rossiiskoi akademii nauk. Seriya matematicheskaya, 86:4 (2022), 3–50 | DOI | MR | Zbl

[5] Dzh. Merfi, S$^*$algebry i teoriya operatorov, Faktorial, M., 1997, 336 pp.

[6] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, 1991, 335 pp.