Numerical search of surface waves in a periodic grating
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 114-123
Cet article a éte moissonné depuis la source Math-Net.Ru
A two-dimensional reflection grating described by the Neumann problem for the Helmhotz equation is considered. The grating is obtained by adding a periodic sequence of rectangles to the upper half-plane. A method for approximate computation of the scattering matrix in the grating is implemented and its convergence is studied. A modification of the method is used for the numerical search of surface waves.
@article{ZNSL_2024_533_a6,
author = {M. M. Kabardov and O. V. Sarafanov},
title = {Numerical search of surface waves in a periodic grating},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {114--123},
year = {2024},
volume = {533},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a6/}
}
M. M. Kabardov; O. V. Sarafanov. Numerical search of surface waves in a periodic grating. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 114-123. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a6/
[1] V. Grikurov, E. Heikkola, P. Neittaanmäki, B. Plamenevskii, “On computation of scattering matrices and on surface waves for diffraction gratings”, Numerische Mathematik, 94:2 (2003), 269–288 | DOI | MR | Zbl
[2] B. A. Plamenevskii, A. S. Poretskii, O. V. Sarafanov, “Metod vychisleniya matritsy rasseyaniya dlya akusticheskikh difraktsionnykh reshetok”, Zap. nauchn. semin. POMI, 516, 2022, 238–252
[3] I. V. Kamotskii, S. A. Nazarov, “Anomalii Vuda i poverkhnostnye volny v zadache rasseyaniya na periodicheskoi granitse. I”, Matem. sb., 190:1 (1999), 109–138 | DOI | MR | Zbl