On the analytical properties of solutions of the dispersion equation of the Airy medium
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 101-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of wave propagation near the interface between an isospeed water layer overlying a halfspace with a sound speed gradient, known as an Airy medium, characterized by a linear variation of the squared refractive index with depth is considered. A dispersion relation is derived, which is a transcendental equation containing Airy functions. For certain values of the problem parameters, it is proved that the dispersion equation has a countable set of solutions (horizontal wave numbers of normal modes). Asymptotic solutions of the dispersion equation for a geoacoustic shallow water waveguide, consisting of an unbounded homogeneous water layer and a bottom Airy halfspace, have been constructed and analyzed.
@article{ZNSL_2024_533_a5,
     author = {G. L. Zavorokhin and A. A. Matskovskii},
     title = {On the analytical properties of solutions of the dispersion equation of the {Airy} medium},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--113},
     year = {2024},
     volume = {533},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a5/}
}
TY  - JOUR
AU  - G. L. Zavorokhin
AU  - A. A. Matskovskii
TI  - On the analytical properties of solutions of the dispersion equation of the Airy medium
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 101
EP  - 113
VL  - 533
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a5/
LA  - ru
ID  - ZNSL_2024_533_a5
ER  - 
%0 Journal Article
%A G. L. Zavorokhin
%A A. A. Matskovskii
%T On the analytical properties of solutions of the dispersion equation of the Airy medium
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 101-113
%V 533
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a5/
%G ru
%F ZNSL_2024_533_a5
G. L. Zavorokhin; A. A. Matskovskii. On the analytical properties of solutions of the dispersion equation of the Airy medium. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 101-113. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a5/

[1] C. L. Pekeris, Theory of propagation of explosive sound in shallow water, Geol. Soc. Am., Memoir., 27, 1948

[2] F. B. Jensen, W. A. Kuperman, M. B. Porter, H. Schmidt, Computational Ocean Acoustics, Springer Science Business Media, 2011 | MR | Zbl

[3] L. M. Brekhovskikh, Yu. P. Lysanov, Fundamentals of ocean acoustics, Spring-Verlag, Berlin, 2003 | MR

[4] L. M. Brekhovskikh, Waves in layered media, Academic Press, New York, 1980 | MR | Zbl

[5] V. S. Buldyrev, “Investigation of the Green's function in a problem of diffraction by a transparent circular cylinder. I”, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 4:14 (1964), 275–286 | MR | Zbl

[6] V. S. Buldyrev, A. I. Lanin, “Investigation of Green's function in the problem of diffraction at a transparent circular cylinder. II”, USSR Computational Mathematics and Mathematical Physics, 6:1 (1966), 128–149 | DOI | MR

[7] A. A. Matskovskiy, “Interference head wave in diffraction of waves from a point source by an inhomogeneous half-plane”, Computational Mathematics and Mathematical Physics, 55 (2015), 1867–1883 | DOI | MR | Zbl

[8] A. A. Matskovskiy, “Wave front sets of the Buldyrev head wave and whispering gallery waves”, J. Math. Sci., 214:3 (2016), 337–344 | DOI | MR

[9] A. Matskovskiy, G. Zavorokhin, P. Petrov, “A Method for reducing transcendental dispersion relations to nonlinear ordinary differential equations in a wide class of wave propagation problems”, Mathematics, 10:20 (2022), 3866 | DOI

[10] P. Petrov, A. Zakharenko, A. Matskovskiy, G. Zavorokhin, S. Dosso, “On the dependence of acoustic modes on media parameters in the Pekeris–Airy waveguide”, J. Theor. Comp. Acoustics, 4 (2024)

[11] B. Katsnelson, V. Petnikov, J. Lynch, Fundamentals of Shallow Water Acoustics, Springer Science Business Media, 2012 | Zbl

[12] L.D. Landau, L.E. Lifshitz, Quantum mechanics: non-relativistic theory, Elsevier, 2013 | MR

[13] V. S. Buldyrev, “Interference of short waves in the problem of diffraction by an inhomogeneous cylinder of arbitrary cross section”, Izv. Vyssh. Uchebn. Zaved. Radiofiz., 10:1 (1967), 699–711

[14] V. M. Babich, V.S. Buldyrev, Short-Wavelength Diffraction Theory, Springer-Verlag, 1991 | MR | Zbl